

ENVIRONMENTAL INDICATORS

2016

Republic of Macedonia Ministry of Environment and Physical Planning Macedonian Environmental Information Center

AIR

MK-NI 001

EMISSIONS OF ACIDIFYING SUBSTANCES

Definition

The indicator tracks the trends in anthropogenic emissions of acidifying substances, i.e. acidifying processes in the air. These substances include nitrogen oxides, ammonia, and sulphur dioxide, and their acidifying power is weighted by their acidifying potential.

The indicator also provides information on emissions by sectors: energy generation and transformation, road and other transport, industry (processes and energy), fugitive emissions, waste, agriculture and other.

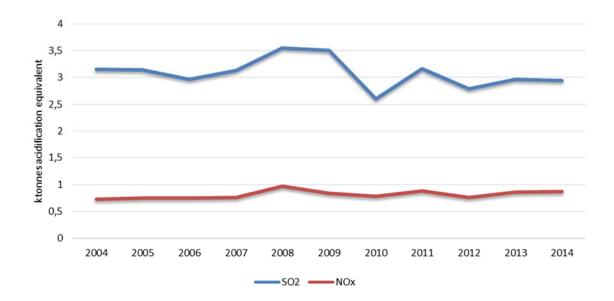
Units

kt (acidifying equivalent)

Key policy issue

What progress has been made in overall reducing acidifying substances emissions in the air?

Key message


Sulfur dioxide (SO₂)

The key sector of this polluting substance is Combustion in energy and transformation industries. Compared to the trend in 2004, emissions of sulfur dioxide changed in 2014 (reduction by 14% compared to 2004), but the trend was variable due to changes in the consumption of coal in energy sector. Nevertheless, there was no significant reduction compared to other European countries, due to the fact that no best available techniques were applied in the energy producing installations for reduction of sulfur oxides as substances originating from the use of coal with high content of sulfur. On the other side, SO₂ emissions from fuels combustion in industry and administrative facilities owing to use of crude oil with sulfur content up to 1%. Yet, this reduction did not contribute to significant reduction in overall emissions considering that the share of emissions from electricity producing installations in 2014 was around 92%. Significant reduction in this polluting substance is expected upon introduction of desulfurization process in the largest electricity producing plant REK Bitola planned to be implemented by the end of 2017.

Nitrogen oxide (NOx)

The overall national NOx emissions amounted 36 kt in 2004. Since then, emissions dropped by 12% to reach the level of around 31.5 kt in 2014. The key sectors for this pollutant are energy production and road transport. The trend of emissions during the reporting period was not stable and depended mainly on the consumption of fuels in energy sector. The resons for the reduction during the last several years are related to significantly reduced emissions from the industry for electricity production owing to reduced scope of operation in REK Oslomej and modernization of boilers in REK Bitola. As a result of the old vehicle fleet (around 79% of cars belong to EURO classes 0-2), there was no significant reduction in the emission of this pollutant from road transport.

Diagram 1. Emission trends for nitrogen oxides and sulfur dioxide

Assessment

Under the CARDS Programme, Inventory of air emissions of the main pollutants in the country was established in 2005 in accordance with the EMEP methodology by individual sectors, i.e. activities, and in 2014 Inventory including all pollutants was prepared.

Sectors based on the above mentioned methodology and SNAP – selective nomenclature of air pollution is presented in the table below:

SNAP	Sector					
1	Combustion in energy and transformation industries (stationary sources)					
2	Non-industrial combustion plants (stationary sources)					
3	Combustion in manufacturing industry (stationary sources)					
4	Production processes (stationary sources)					
5	Extraction and distribution of fossil fuels and geothermal energy					
6	Solvent and other product use					
7	Road transport					
8	Other mobile sources and machinery					
9	Waste treatment and disposal					
10	Agriculture					
11	Nature					

For ozone precursors, nitrogen oxides, the main sources of emissions in 2014 were the following SNAP categories of sources: Road transport (SNAP 7) with a share of 38% and Combustion in energy and transformation industries (SNAP 1) with a share of 48% in the overall national emissions of NOx.

As far as sulfur dioxide is considered, almost all emissions of SO_2 originate from SNAP sector 1 - Combustion in energy and transformation industries. Thus, the main sources of emission in 2014 were the following NFR categories of sources: 1A1 Energy industries (Public energy and heating plants) with a share of 92% in the overall national emissions of SO_2 . Around 6% of overall national emissions of SO_2 originate from SNAP sector 3 - Combustion in manufacturing industry. SNAP sectors 5 and 9 are small sources of SO_2 emissions.

Policy specific issue

Which different sectors and processes contribute to acidifying substances emissions?

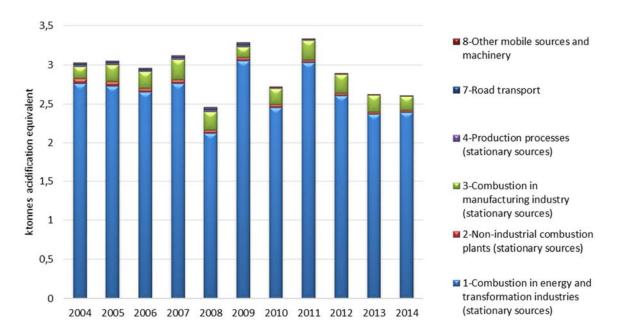
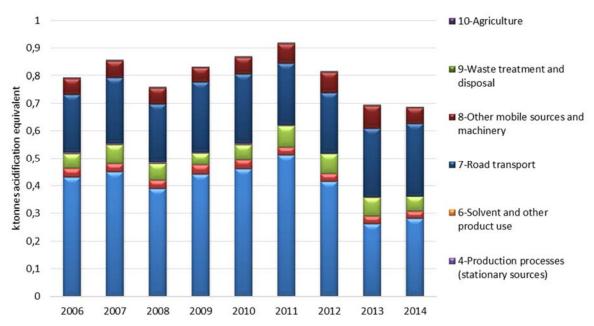



Diagram 2. Total SOx emissions by sectors on annual level

Sector 1A1 Energy industries (Public energy and heating plants) is the key sector in sulfur oxides emission. In 2013 and 2014, approximately the same emissions of sulfur oxides were recorded which were lower than in 2011 and 2012 due to the lower capacity of operation of the thermal power plant REK Oslomej. In general, it may be concluded that the same trend of proportional share of sectors contributing to sulfur oxides emission was observed.

Data coverage: **excel**

Source of data: The data used refers to overall national emissions and emissions categorized by NFR delivered to "Eionet Central Data Repository" by EEA member and collaborating states to EEA and Parties to CLRTAP. Data is accessible per country on the following web address: http://Nickelr.eionet.europa.eu/mk/un/UNECE_CLRTAP_MK.

Methodology

Methodology for the indicator calculation

The methodology for this indicator calculation is based on aggregation and calculation of data on SO_2 and NO_x emissions at annual basis, on national level, both as overall and distributed to sectors, i.e. activities.

Calculations are in line with the Guidelines of UNECE/EMEP Convention on Long-Range Transboundary Air Pollution (LRTAP Convention), as well as application of the SNAP – selective nomenclature of air pollution. With regard to this specific indicator, factors have been used in order to express the acidifying property potential. These factors are for NO $_{\times}$ 0.02174 and for SO $_{2}$ 0.03125. The results are expressed in kilotonnes equivalent acidity.

Uncertainty

Methodological and data uncertainty

Use of factors of the acidifying property potential leads to some uncertainty. Furthermore, national emission factors obtained by measurements in the Republic of Macedonia are used only in energy sector. For other sectors, standard emission factors from the EMEP/EEA Guideline are used for the inventory of air pollutants. It has been assumed that the factors are representative for Europe as a whole; different factors may be estimated at local level. Comprehensive discussion on uncertainty of these factors can be found in deLeeuw (2002). As far as activity installment is concerned, uncertainty arises from data taken from Statistical Yearbook and other sources. Definition of activity installment which is not required form, expert estimations containing uncertainty are made.

Reference of used methodology

EMEP/EEA Guideline for inventory of air pollutant emissions 2013, Technical Report no. 12/2013, EEA.

Policy relevance of the indicator

List of relevant policy documents

Action Plan for European Partnership, as well as National Plan for approximation of the national legislation with European regulations specifying bylaws that need to be prepared has been adopted.

The National Environmental Action Plan (NEAP II) has been adopted. It contains the measures that need to be taken to improve the overall status of air quality, including the reduction of emissions of acidifying substances. The National Plan for Ambient Air Protection for the period 2012 to 2017 and the National Programme for gradual air emissions reduction by 2020 have been adopted in order to define and implement measures on national level concerning introduction of renewable energy sources, application of the code of good agricultural practice, technical control of vehicles at registration, application of the best available techniques in industrial facilities, etc. At the same time,

for the purpose of air quality improvement in certain local self-government units (LSGUs) with action plans, pilot programme was prepared for the City of Bitola, serving as basis for preparation of local planning documents in other cities. Currently air quality plans and short term action plans for city of Skopje and city of Tetovo are under preparation in the Twining project "Further strengthening the capacities for effective implementation of the acquis in the field of air quality", which should be finalized at the end of 2016.

All 8 Protocols to the Convention on Long-Range Transboundary Air Pollution (CLRTAP) were ratified in 2010. With regard to the last three Protocols, i.e. Protocol on heavy metals, Protocol on POPs and Gothenburg Protocol, National Action Plan for Ratification and Implementation was adopted at their request. Due to the requirement for modifications of national totals related to emissions in baseline year (1990) and national emission ceilings for 2010, the Gothenburg Protocol and Protocol on sulfur of 1995 entered into force for the Republic of Macedonia in 2014, upon the adoption of the values specified in Annex II to these Protocols.

In order to fulfill one of the basic requirements under the Protocols to CLRTAP, Inventory of Air Pollution is prepared on regular annual level by EMEP/EEAMethodology and the prepared inventory is reported to UNECE and CLRTAP and European Environmental Agency. With regard to fulfillment of the requirements of the Stockholm Convention covering the same pollutants specified in the Protocol on POPs, the National Implementation Plan for old and new organic pollutants was updated and Inventory of old and new POPs chemicals was prepared.

Legal basis

The Law on Ambient Air Quality was adopted in August 2004 and amended several times afterwards (Official Gazette of RM no. 67/2004, 92/2007, 83/2009, 35/10, 47/11, 100/12, 163/2013) as framework law in the area of air. The goals of this Law include avoiding, prevention and reduction of harmful effects on human health and environment as a whole, prevention and abatement of pollutions leading to climate change, as well as provision of appropriate information on the quality of ambient air.

On the basis of the Law on Ambient Air Quality, 16 bylaws were prepared and adopted to introduce limit values for air quality and air emissions, methodology of air quality and air emissions monitoring, manner of preparation of planning documents for air protection against pollution, manner of informing the citizens and international organizations, etc.

With reference to air standards transposed in part of the mentioned rulebooks, all ISO and CEN standards and their amendments in the area of air emissions and air quality were adopted by means of endorsement method.

Other legislation related to the regulation of air quality and air emissions regulation includes the Law on Vehicles, Law on Standardization, Rulebook on liquid fuels quality with national standards for liquid fuels quality, etc.

Targets

Do any of the national documents set targets or targets set under international documents should be achieved?

National documents listed as references in the above text provide guidelines and specify actions that should be undertaken as a matter of priority. It is important to mention that the transposition of Directives 96/61/EC, 2000/81/EC, 2000/76/EC, 99/13/EC and 2001/81/EC into the national laws and bylaws ranges between 90-100%, while activities towards their implementation are in progress.

In accordance with the requirements of the UNECE Convention on Long-Range Transboundary Air Pollution, inventory based on the CORINAIR Programme has been introduced, setting the target of regular inventory of pollutants in tons per year following the n-2 principle, where n is the current year.

Also, in accordance with Directive 2001/81/EC, as well as Gothenburg Protocol, the ceilings of the amounts of emissions have been set at the level of the Republic of Macedonia for 2010 that shall not be exceeded at annual level. The Executive Body of the Convention on Long-Range Transboundary Air Pollution, upon submission of the values of national ceilings in order to enrol the Republic of Macedonia in Annex II of the Gothenburg Protocolrequested correction of the values considering the reported data on air emissions of the pollutants sulfur dioxide and ammonia at national level. Changes in the values of these pollutants were incorporated in the Rulebook amending the Rulebook on upper limits — emission ceilings of pollutants for the purpose of setting projections for certain period concerning reduction of the quantities of pollutant emissions at annual level published in July 2014. In 2014, national upper limits — ceilings for SO_2 and NO_x were not exceeded.

	Upper limit - ceiling	Total emissions-2014
SO ₂	110 Gg	83,14Gg
NO _x	39 Gg	31,56Gg

With regard to targets – emission projections for SO_2 and NO_x for 2015, they amount 84.63 Gg, and for nitrogen oxides under the scenario with measures, emission level of 33.7 Gg should be achieved.

As far as achievement of targets – projections for SOx by application of model, this target (under the applied GAINS model) for 2020 is 15 kilotons. This projection would be achieved is the National Emission Reduction Plan (NERP) is implemented in accordance with the Decision of the Ministerial Council of the Energy Community (D/2013/05/MC-S-end) concerning restriction of emissions of certain air pollutants from large combustion plants (LCP) which is currently under review to be adopted by the Energy Community in September this year.

Achievement of the targets for reduction of acidifying pollutants emissions which at the same time cause degradation of environment, materials and negative effect on human health is dependent on the adoption and implementation of all planned documents under the National Programme for Approximation with the EU Acquis.

Reporting obligation

- Reporting obligations under multilateral agreements UNECE/CLRTAP and towards EEA
- Annual report of processed data on environment

General metadata

Code	Title of the indicator	Compliance with CSI EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequenc y of publicatio n
MK NI 001	Emissions of acidifying substances	EEA	CSI 001	P	В	■ acidification ■ air	annually

*MK - NI 002*EMISSIONS OF OZONE PRECURSORS

Definition

This indicator tracks trends in emissions of ozone precursors: nitrogen oxides, carbon monoxide, methane and non-methane volatile organic compounds, caused by anthropogenic activities, and each precursor is weighted by its tropospheric ozone-forming potential.

The indicator also provides information on emissions by sectors: energy industries; road and other transport modes; industry (processes and energy); other (energy); fugitive emissions; waste; agriculture and other (non-energy).

Units

kt (NMVOC - equivalent)

Key policy issue

What progress has been made in overall ozone precursors emissions reduction in Europe?

- Emissions of ozone precursors in 2014 compared to 2004 dropped for nitrogen oxides (NO_X) by 12%, they decreased for non-methane volatile organic compounds (NMVOC) by 19%, for carbon monoxide (CO) by 15%, and increase was recorded for methane (CH₄) by 19%.
- With regard to nitrogen oxides, the sharp drop in emissions between 2011 and 2012 resulted from the reduced consumption of coal by thermal power plants for electricity production. In the period 2012-2013, reduction of the emissions was due to reduced operation of REK Oslomej from 12 to 5 months, as well as reduction in coal production by as much as 60%. Lower emissions of NOx in 2013 compared to 2012 were also result from the modernization of the boilers in the largest thermal power plant REK Bitola. Emissions of this pollutant during 2013 and 2014 were relatively stable (-1%).
- As far as volatile organic compounds emissions are concerned, in emissions in 2014 were reduced by around 30 kt. The reasons for the reduction are related mainly to the reduced emissions from transport and use of solvents. From 2013 to 2014, emissions were reduced by 16% also owing to reduced consumption of solvents and slightly lower emissions of household sector.
- In 2014, emissions of CO were reduced by 15% and amounted 112 kt. There was also significant reduction in CO emissions in 2001 compared to 2000. From 2001 to 2014, the trend did not manifest significant variations.
- CH₄ was the only pollutant among ozone precursors where increase in emission was recorded in the followup years as a result of increased emissions from the waste sector resulting from increased population and slow implementation of the waste strategy.

The Diagram below shows annual trend of carbon monoxide, methane, non-methane organic compounds and nitrogen oxides emissions presented as ozone precursors.

NMVOC equvalent [kt] ■ NOx ■ CO ■ NMVOC ■ CH4

Diagram 1. Total ozone precursors emissions

The Diagram indicates that decrease in overall ozone precursors can be noted as of 2011, with the trend being almost unvariable in the preceding period.

Assessment

Under the CARDS Programme, Inventory of air emissions of the main pollutants in the country was established in 2005 in accordance with the EMEP methodology by individual sectors, i.e. activities, and in 2014 Inventory including all pollutants was prepared.

Sectors based on the above mentioned methodology and SNAP – selective nomenclature of air pollution are presented in the table below:

SNAP	Sector			
1	Combustion in energy and transformation industries (stationary sources)			
2	Non-industrial combustion plants (stationary sources)			
3	Combustion in manufacturing industry (stationary sources)			
4	Production processes (stationary sources)			
5	Extraction and distribution of fossil fuels and geothermal energy			
6	Solvent and other product use			
7	Road transport			
8	Other mobile sources and machinery			
9	Waste treatment and disposal			
10	Agriculture			
11	Nature			

Data used in the calculation of ozone precursors was taken from the Inventory of air pollutant emissions by sectors or activities prepared in 2016 when recalculation of emissions for the whole period of 1990-2014 was made.

Inventory of methane as one of ozone precursors is made by IPPC methodology. In the frames of the Third National Communication on Climate Change, GHG Inventory was made for the period

1990-2012 and data on methane emissions by sectors ws taken from there.

Completed inventory of ozone precursors indicates dropping trend during the analyzed period.

Changes in the quantities of NOx and CO emissions in transport sector resulted from the change in consumed quantities of diesel fuels and petrols by passenger cars. In this sector, vehicle fleet keeps renewing from year to year, though the number of used cars increases thus resulting in absence of significant emissions reduction from the traffic. As far as reduction in NOx emissions from energy sector is concerned, the implementation of IPPC Directive and introduction of the best available techniques in heat production installations, as well as modernization of electricity production plants in 2013, reduction in emissions of this pollutant from energy sector was recorded upon 2013. The amount of CO emissions from non-combustion facilities like households depends mainly from the use of wood for heating. These emissions would be reduced in future through introduction of gasification.

Directive 1999/13/EC regarding NMVOC emissions from solvents use in installations and certain activities has been partially transposed (only for limit values) in the national legislation, and reduction schemes for these pollutants have not been introduced. Full transposition of this Directive is planned by the end of this year. On the other side, transposition of Directives 1994/63/EC and 2009/126/EC concerning emissions from petrol filling and distribution to petrol stations is in final stage and implementation of the Law on Control of Volatile Organic Compound Emissions at petrol use has commenced. Namely, registration of installations for storage, installations for filling and emptying of mobile containers and petrol stations in accordance with the adopted rulebook is underway.

Yet, reduction in NMVOC emissions from the implementation of the adopted and planned legislation is expected to be achieved in the coming years.

With regard to greenhouse gas methane, overall emissions have increased due to emission increase in waste sector owing to the trend of growth in the quantity of solid waste. Emission of methane from agriculture sector was dropping by 2004 and then followed a stable trend. Reduction in the emission of this pollutant is expected upon the implementation of the waste legislation.

Specific policy issue

Which different sectors and processes contribute to ozone precursors emissions?

Diagram 2. Total NOx emissions by sectors/year

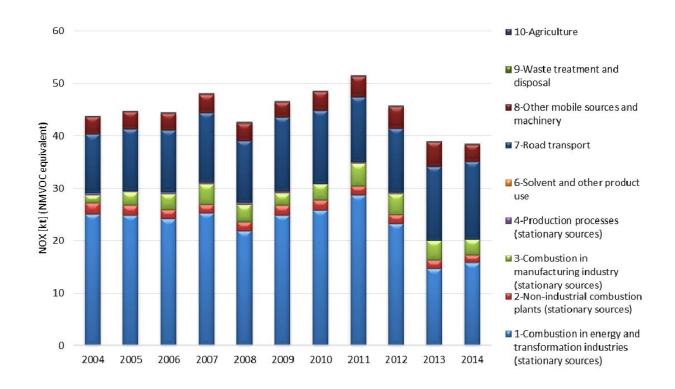


Diagram 3. Total CO emissions by sectors/year

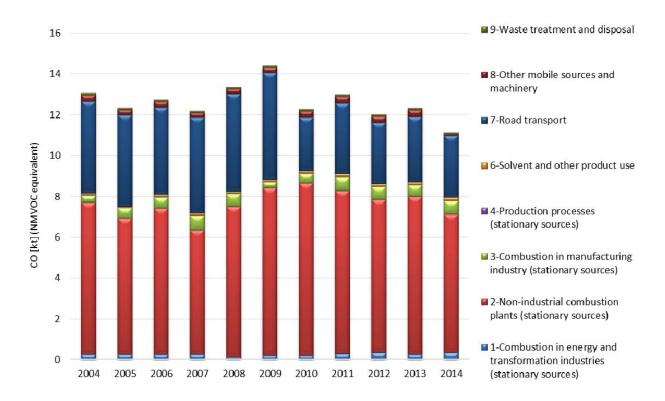


Diagram 4. Total NMVOC emissions by sectors/year

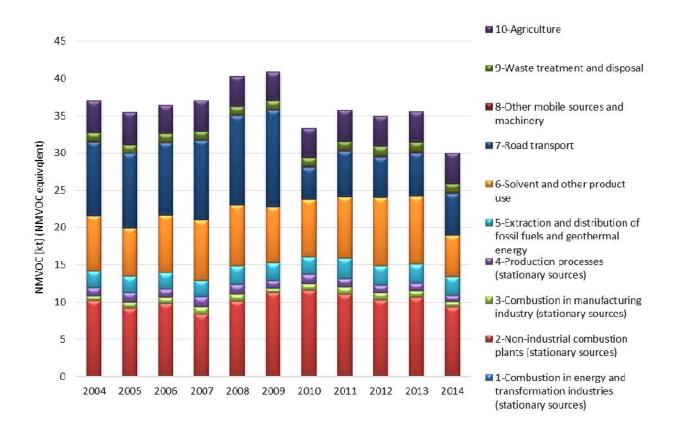
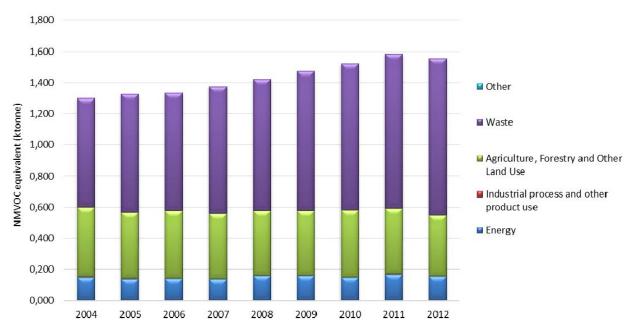



Diagram 5. Total CH4 emissions by sectors/year

Data coverage: **excel**

Source of data: The data on NMVOC, CO and NOx as overall national emissions and emissions categorized by NFR was taken from the following web site: http://cdr.eionet.eu/mk/un/UNECE_CLRTAP_MK, posted in February 2016. Data on CH₄

emissions was taken from the Inventory of GHG accessible at the following web site: http://cdr.eionet.europa.eu/mk/un/unfccc/envvsz1bw/.

Nitrogen oxides (NOx)

The main sources of emissions of this polluting substance in 2014 were the following SNAP categories of of sources: Road transport (SNAP 7) with a share of 38% (22 in 1990) and Combustion in energy and transformation industries (SNAP 1) with a share of 48% (55 in 1990) in the overall national NOx emissions. Significant reduction in the share in overall NOx emissions was recorded in SNAP sector 3 - Combustion in manufacturing industry which amounted only 5% (19% in 1990).

Carbon monoxide (CO)

Almost all emissions of CO originate from Energy sector, mainly from 1A4 Other sectors (household heating) and 1A3 Transport (road transport), and less from combustion in energy plants (1A1). The reason for the reduction in the emissions in the period 2010 to 2014 compared to previous years is related to reduced emissions in the sector 1A3 Transport (road transport). From 2013 to 2014, emissions declined by 10% mainly due to warmer winter and thus lower consumption of fuel wood.

Nonmethane volatile organic compounds (NMVOCs)

The main sources of emissions in 2014 of NMVOCs were the NFR categories of sources 1A4 Other sectors (mostly household heating), 2 Industrial processes and product use (mostly use of solvents) and 1A3 Transport. In the period 2011 to 2013, annual emissions of NMVOCs by sectors were approximately the same, and reduced emission was recorded in 2014 due to reduced emissions of NMVOCs from sectors 2 Industrial processes and product use and 1A4 Other sectors (mostly household heating).

Methane (CH₄)

With regard to methane emissions, categorization was made in several sectors: waste, industry, agriculture, energy and other. Throughout the reporting period, emissions from the sector waste were the highest and increasing for the last several years. The sector Agriculture, forestry and land use is the second key sector with significant share in methane emission, followed by energy sector.

Methodology

Methodology for the indicator calculation

The methodology for this indicator calculation is based on aggregation and calculation of data on CO, NMVOC, CH₄ and NO₂ emissions at annual basis, on national level, as overall and distributed to sectors, i.e. activities.

Calculations are in line with EMEP/EEA Guidelines and methodology for inventory and application of the SNAP – selective nomenclature of air pollution.

With regard to this specific indicator, factors have been used in order to express the property of ozone precursors. These factors are specific to each pollutant, namely for NO_x it is 1.22, for NMVOC it is 1, for CO it is 0.11 and for CH_4 this value is 0.014. The results are expressed in kilotons NMVOC equivalent.

Reference of used methodology

Methodology applied in the calculation and presentation of this indicator has been taken from the EMEP/EEA Guideline on air pollutant emission inventory 2013, Technical Report no. 12/2013, EEA. and de Leeuw, F. (2002). Set of emission indicators of long-range transboundary air pollution, Environmental science and policy.

Policy relevance of the indicator

The European Partnership Action Plan has been adopted, as well as the National plan for approximation of the national legislation with the European regulations stating the bylaws that need to be prepared.

NEAP II has been prepared, specifying the measures that need to be taken to improve the overall status of air and in that sense to reduce emissions leading to acidification. The National Ambient Air Protection Plan 2012-2017 has been adopted, and it contains measures for air protection on national level and the National program for gradual reduction of emissions until 2020 in order to define and implement measures on national level concerning introduction of renewable sources, application of the code of good agricultural practice, technical control of vehicles at registration, application of the best available techniques in industrial facilities, etc., as well as technical control and on road checks. At the same time, for the purpose of air quality improvement in certain local self-government units (LSGUs) with action plans, pilot programme was prepared for the City of Bitola, serving as basis for preparation of local planning documents in other cities. Currently air quality plans and short term action plans for city of Skopje and city of Tetovo are under preparation in the Twining project "Further strengthening the capacities for effective implementation of the acquis in the field of air quality", which should be finalized at the end of 2016.

All 8 Protocols to the Convention on Long-Range Transboundary Air Pollution (CLRTAP) were ratified in 2010. With regard to the last three Protocols, i.e. Protocol on heavy metals, Protocol on POPs and Gothenburg Protocol, National Action Plan for Ratification and Implementation was adopted at their request. Due to the requirement for modifications in contributions related to emissions in baseline year (1990) and national emission ceilings for 2010, the Gothenburg Protocol and Protocol on sulfur of 1995 entered into force for the Republic of Macedonia in 2014, upon the adoption of the values specified in Annex II to these Protocols.

In order to fulfill one of the basic requirements under the Protocols to CLRTAP, Inventory of Air Pollution is prepared on regular level by EMEP/EEA Methodology and the prepared inventory is reported to UNECE and CLRTAP and European Environmental Agency.

With regard to fulfillment of the requirements of the Stockholm Convention covering the same pollutants specified in the Protocol on POPs, the National Implementation Plan for old and new organic pollutants was updated and Inventory of old and new POPs chemicals was prepared.

Legal basis

The Law on Ambient Air Quality was adopted in August 2004 and amended several times afterwards (Official Gazette of RM no. 67/2004, 92/2007, 83/2009, 35/10, 47/11, 100/12, 163/2013) as framework law in the area of air. The goals of this Law include avoiding, prevention and reduction of harmful effects on human health and environment as a whole, prevention and abatement of pollutions leading to climate change, as well as provision of appropriate information on the quality of ambient air.

On the basis of the Law on Ambient Air Quality, 16 bylaws were prepared and adopted to introduce limit values for air quality and air emissions for NMVOC, CO and NOx, methodology of air quality and air emissions monitoring, manner of preparation of planning documents for air protection against pollution, manner of informing the citizens and international organizations, etc.

With reference to air standards transposed in part of the mentioned rulebooks, all ISO and CEN standards and their amendments in the area of air emissions and air quality were adopted by means of endorsement method.

Other legislation related to the regulation of air quality and air emissions regulation includes the

Law on Vehicles, Rulebook on liquid fuels quality with national standards for liquid fuels quality, etc.

In 2010, all 8 Protocols to the Convention on Long-Range Transboundary Air Pollution – CLRTAP were ratified.

In relation to the obligations for calculation of emissions of non-methane volatile organic compounds (NMVOCs), the following protocols or international ratified agreements are of relevance:

Protocol to 1979 Convention on Long-Range Transboundary Air Pollution concerning concerning control of emissions of non-methane volatile organic compounds or their transboundary transfer. The Protocol was ratified by the Law on Ratification (Official Gazette of RM no. 24/2010);

Protocol to 1979 Convention on Long-Range Transboundary Air Pollution concerning reduction of acidification, eutrophication and ground ozone. The Protocol was ratified by the Law on Ratification (Official Gazette of RM no. 135/2010).

The latter Protocol is also relevant for nitrogen oxides, and the older Protocol to 1979 Convention on Long-Range Transboundary Air Pollution concerning concerning control of nitrogen oxides releases or their transboundary transfers (Official Gazette of RM no. 24/2010).

Targets

Does any of the national documents set targets or targets set under international documents should be achieved?

National strategic documents listed as references in the above text provide guidelines and specify actions that should be undertaken as a matter of priority. It is important to mention that the new regulations in the area of air emissions have been adopted transposing the following Directives into the national legislation: 96/61/EC, 2000/81/EC, 2000/76/EC, 99/13/EC and 2001/81/EC and the level of transposition is 90-100%.

In accordance with the requirements of the UNECE Convention on Long-Range Transboundary Air Pollution, inventory taking was introduced based on the EMEP/EEA Guideline on air pollutant emission inventory aimed at regular inventory of pollutants in tonnes per year following n-2 principle where n is the current year.

Also in accordance with Directive 2001/81/EC and Gothenburg Protocol, the upper limits-ceilings of the amounts of emissions have been set at the level of the Republic of Macedonia for 2010 that shall not be exceeded at 2010 annual level. The Executive Body of the Convention on Long-Range Transboundary Air Pollution, upon submission of the values of national ceilings in order to enroll the Republic of Macedonia in Annex II of the Gothenburg Protocol requested correction of the values considering the reported data on air emissions of the pollutants sulfur dioxide and ammonia at national level. Changes in the values of these pollutants were incorporated in the Rulebook amending the Rulebook on upper limits – emission ceilings of pollutants for the purpose of setting projections for certain period concerning reduction of the quantities of pollutant emissions at annual level published in July 2014. In 2014, national upper limits – ceilings for NO_x and NMVOCs were not exceeded.

	Upper limit - ceiling	Total emissions-2014
NMVOC	30 Gg	29,97
NO _x	39 Gg	31,56

With regard to targets – emission projections for NO_x for 2015 (33.7 kilotons), under the scenario

with measures set in the Programme for gradual reduction of emissions of certain polluting substances at the level of the Republic of Macedonia, with reduction projections from 2012 to 2020, those have been achieved in 2014. With regard to targets – emission projections for NO_x for 2020 under the scenario with measures, emission level of 23.8 Gg should be achieved. With regard to targets – emission projections for NMVOC for 2020 set in the Programme for gradual reduction of emissions of certain polluting substances at the level of the Republic of Macedonia, with reduction projections from 2010 to 2020, it should be pointed out that those have not been taken into account because of recalculations of the emissions made during the last years for this polluting substance. Therefore, revision of the projections for 2020 has been envisaged and those are not included in this report.

Also, the targets set under the older protocols (emissions in 1987 for NOx and emissions of NMVOCs for 1988) have not been exceeded in the current year (2014) of reporting.

These documents set the basis for achievement of the targets for reduction of emissions of ozone precursors thus resulting in reduced degradation of environment and negative effect on human health.

Reporting obligation

- Reporting obligations under multilateral agreements UNECE transboundary air pollution transfer, as well as to EEA
- Annual report of processed data on air emissions

General meta-data

Code	Title of the indicator		nce with CSI her indicators	Classification by DPSIR	Typ e	Linkage with area	Frequency of publication
MK NI 002	Emissions of ozone precursors	EEA	CSI 002	Р	Α	airair quality	annually

MK - NI 004

EXCEEDANCE OF AIR QUALITY LIMIT VALUES IN URBAN AREAS - NO₂

Definition

The indicator shows the portion of urban population potentially exposed at ambient air concentrations of pollutants in excess of the limit value set for human health protection.

Urban population taken into account is actually the total number of inhabitants living in cities with at least one monitoring station. These cities include the capital and other major cities of the Republic of Macedonia. The number of inhabitants is based on the last census carried out by the State Statistical Office in 2002.

Exceedance of air quality limit values occurs when the concentration of air pollutants exceeds the limit values for SO_2 , PM_{10} , NO_2 and the target values for O_3 as specified in the Decree on the limit values of levels and types of polluting substances in ambient air and on the alert thresholds, deadlines for the limit values achievement, margins of limit value tolerance, target values and long-term ozone targets (Official Gazette of the Republic of Macedonia No. 50/05, 4/2013), wherein the requirements of the Directive on Ambient Air Quality and Cleaner Air in Europe 2008/50 EC and Heavy Metals Directive 2004/107/EC have been transposed. Where there are multiple limit values (see section on Policy Targets), the indicator uses the most stringent case:

- Sulphur dioxide (SO₂): the daily mean limit value
- Nitrogen dioxide (NO₂): the annual limit value
- Particulate matter of a size up to 10 micrometer (PM₁₀): the daily mean limit value
- Ozone (O₃): the short term objective

Units

The percentage of urban population potentially exposed at ambient air concentrations of sulphur dioxide (SO_2), particulate matter sized up to 10 micrometer (PM_{10}), nitrogen dioxide (NO_2) and ozone (O_3) above limit values set for human health protection. Ambient air concentrations of sulphur dioxide (SO_2), particulate matter sized up to 10 micrometer (PM_{10}), nitrogen dioxide (NO_2) and ozone (O_3) are expressed in microgram/m³(μ g/m³).

Key policy issue

What progress has been achieved in reducing the concentrations of pollutants in urban areas in order to achieve the limit values, NO_2 set in the Decree?

Key message

In the period from 2004 to 2015, the portion of the population exposed at concentrations of nitrogen dioxide above the limit values set for human health protection ranged between 0 and 69%. The highest percentage of population exposure of 69% was recorded in 2011.

Diagram 1: Percentage of urban population exposed at air pollution in areas where concentrations of pollutants are in excess of limit/target values

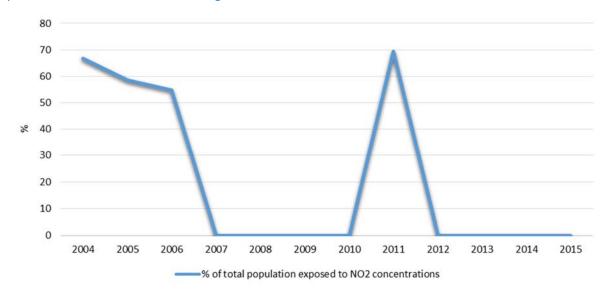


Diagram 2: Percentage of population exposed at NO₂ annual concentrations in urban areas

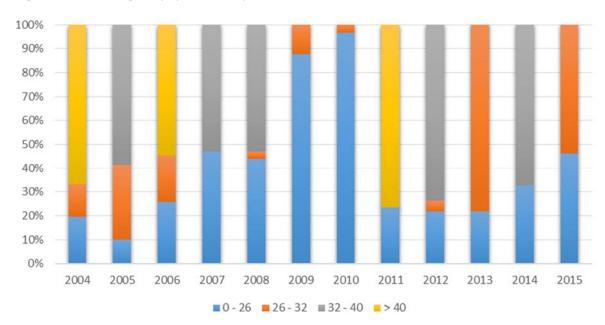
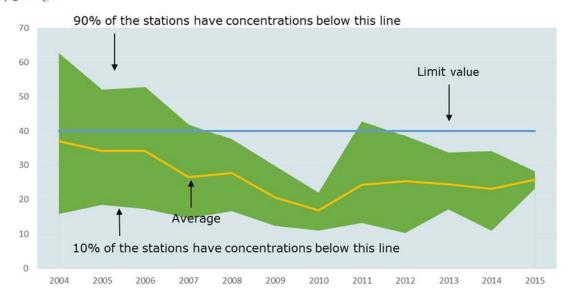



Diagram 3: Average annual concentration of NO₂

 $\mu g NO_2/m^3$

Data coverage: **exce**

Source: Ministry of Environment and Physical Planning

Assessment

Investigations have testified the presence of several nitrogen oxides in the air, but the most significant among them are nitrogen dioxide and nitrogen monoxide. These pollutants most often originate from natural sources. However, in urban environments, the main source is the traffic, and industry is minor source. The most toxic of all nitrogen oxides is the nitrogen dioxide, the concentrations of which are dependent on season and meteorological conditions. Namely, concentration of NO is higher in morning hours when the traffic is more frequent, while the intensification of solar radiation during the day leads to transformation of NO into NO₂ resulting in increased concentration of NO₂. Nitrogen oxides influence the content of ozone and other photochemical oxidants in the air. During the spring-summer period, the concentration of NO₂ is higher, while in autumn-winter period, the concentration of NO is higher. The quantity of NO_x increases in winter period due to the higher frequency of traffic.

In the period 2004 to 2015, the portion of population exposed at nitrogen dioxide concentrations above the limit value for human health protection (40 $\mu g/m^3$ mean annual limit value) ranged from 0 to 69%. The highest percentage of 69% population exposure was recorded in 2011.

In 2004, 2006 and 2011, significant portion of the population (55-67%) of the population was exposed at concentrations above 40 $\mu g/m^3$.

Methodology

Methodology for the indicator calculation

The mean annual concentration in a city is calculated as an average of the mean annual value measured in all monitoring stations located in urban areas. Selected urban stations include stations of the following types: stations measuring traffic pollution, stations measuring industrial pollution and urban background stations.

Uncertainty

Methodological uncertainty and data uncertainty

In general, data is not representative for all urban environments in the Republic of Macedonia. Compared to the methodology of the European Environmental Agency, where the calculation of the indicator is based only on data produced by the urban background stations, in our calculations we used data from all measuring stations located in urban environments. Also, due to the minimum number of monitoring stations, the calculation of the indicator also took into account the stations where data coverage is below 75% per calendar year. We can also point out as uncertainty in the indicator calculation the fact that the number of inhabitants in cities is based on the census of the population conducted by the State Statistical Office in 2002, instead of estimated number of population for each year.

Policy relevance of the indicator

List of relevant policy documents

The National Plan for Air Protection presents the state of air quality, defines the measures for ambient air quality protection and improvement in the Republic of Macedonia and all relevant institutions responsible for their implementation within 5 year period, namely from 2013 to 2018 (Official Gazette of the Republic of Macedonia no.170/2012).

Legal grounds

The Law on Ambient Air Quality was adopted in August 2004 and later amended on several occasions in line with the requirements of the relevant EU legislation (Official Gazette of the Republic of Macedonia Nos. 67/2004, 92/2007, 83/2009, 35/2010, 47/2011 and 59/2012) and it is framework law in the area of air. The main goals of this Law are: avoidance, prevention and reduction of harmful effects on human health and environment as a whole, prevention and reduction of pollution resulting in climate change, as well as provision of the relevant information on the quality of ambient air. This Law establishes the legal grounds for adoption of a number of bylaws in line with the requirements of the relevant *Acquis Communitaire*. So far, 12 bylaws have been adopted. Calculations for this indicator are based on the provisions of the Decree on the limit values of levels and types of polluting substances in ambient air and on the alert thresholds, deadlines for the limit values achievement, margins of limit value tolerance, target values and long-term ozone targets (Official Gazette of the Republic of Macedonia No. 50/05, 4/2013).

Targets

The Decree on the limit values of levels and types of polluting substances in ambient air and on the alert thresholds, deadlines for the limit values achievement, margins of limit value tolerance, target values and long-term targets, defines the limit values for NO₂.

Limit values for concentrations of nitrogen dioxide in ambient air

In accordance with the said Decree, two limit values are specified for nitrogen dioxide for the purpose of human health protection.

- Hourly mean concentration of nitrogen dioxide shall not exceed the limit value of 200 μg/m³ by more than 18 times during one calendar year.
- The mean annual concentration shall not exceed 40 μg/m³.

Reporting obligation

European Environmental Agency

 Air quality data exchange in accordance with implementing Decision containing the rules of Directives 2004/10/EC and 2008/50/EC of the European Parliament and of the Council concerning reciprocal exchange of information I reporting on ambient air quality (Decision 2011/850/EC).

General metadata

Code	Title of the indicator	•	ce with CSI EEA er indicators	Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 004	Exceedance of air quality limit values in urban areas	CSI 004	Exceedance of air quality limit values in urban areas	S	A	air Air quality	annual

MK - NI 004

EXCEEDANCE OF AIR QUALITY LIMIT VALUES IN URBAN AREAS - O₃

Definition

The indicator shows the portion of urban population potentially exposed at ambient air concentrations of pollutants in excess of the limit value set for human health protection.

Urban population taken into account is actually the total number of inhabitants living in cities with at least one monitoring station. These cities include the capital and other major cities of the Republic of Macedonia. The number of inhabitants is based on the last census carried out by the State Statistical Office in 2002.

Exceedance of air quality limit values occurs when the concentration of air pollutants exceeds the limit values for SO_2 , PM_{10} , NO_2 and the target values for O_3 as specified in the Decree on the limit values of levels and types of polluting substances in ambient air and on the alert thresholds, deadlines for the limit values achievement, margins of limit value tolerance, target values and long-term ozone targets (Official Gazette of the Republic of Macedonia No. 50/05, 4/2013), wherein the requirements of the Directive on Ambient Air Quality and Cleaner Air in Europe 2008/50 EC and Heavy Metals Directive 2004/107/EC have been transposed. Where there are multiple limit values (see section on Policy Targets), the indicator uses the most stringent case:

- Sulphur dioxide (SO₂): the daily mean limit value
- Nitrogen dioxide (NO₂): the annual limit value
- Particulate matter of a size up to 10 micrometer (PM₁₀): the daily mean limit value
- Ozone (O₃): the short term objective

Units

The percentage of urban population potentially exposed at ambient air concentrations of sulphur dioxide (SO_2), particulate matter sized up to 10 micrometer (PM_{10}), nitrogen dioxide (NO_2) and ozone (O_3) above limit values set for human health protection. Ambient air concentrations of sulphur dioxide (SO_2), particulate matter sized up to 10 micrometer (PM_{10}), nitrogen dioxide (NO_2) and ozone (O_3) are expressed in microgram/m³(μ g/m³).

Key policy issue

What progress has been achieved in reducing the concentrations of pollutants in urban areas in order to achieve the target values for O_3 set in the Decree?

Key message

In the period from 2004 to 2015, the portion of the population exposed at concentrations of ozone higher than the target value set for human health protection ranged from 12 to 43%. The highest percentage of population exposure of 43% was recorded in 2007.

Diagram 1: Percentage of urban population exposed at air pollution in areas where concentrations of pollutants are in excess of limit/target values



Diagram 2: Percentage of urban population exposed at concentrations of O3 above the long-term target value for human health protection, expressed as number of days in the course of a calendar year

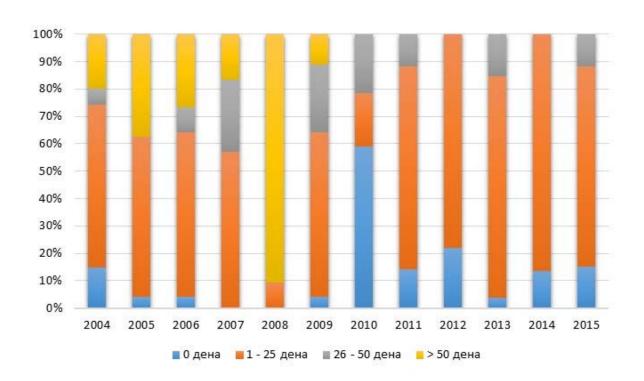
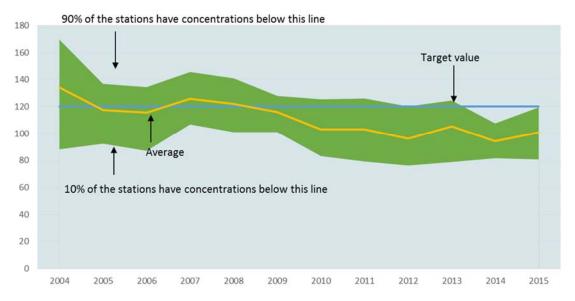



Diagram 3: 26th highest maximum 8-hourly mean concentration of O₃

Data coverage: **excel**

Source: Ministry of Environment and Physical Planning

Assessment

Ozone layer is positioned at height of 10 km to 15 km from Earth and it plays the role of a filter for UV radiation and climate stabilizer.

Automatic monitoring stations measure the ground-level ozone formed as a result of photochemical reactions involving nitrogen oxides, volatile organic compounds (most frequently hydrocarbons), etc. However, its content is also dependent on solar radiation and annual seasons. Thus, higher ozone concentrations are observed in warmer days, especially during summer.

In In the period 2004 to 2015, the portion of population exposed at ozone concentrations above the target value for human health protection ranged from 0 to 43%. The highest percentage of 43% population exposure was recorded in 2007, followed by falling trend to reach 0% in 2012, while the percentage of exposure in 2013 was 15%. Then, in 2014, there was decrease in the portion of population exposure at 0% again and the portion of the population increased in 2015 by 12%.

In the period 2004 to 2009, population was exposed at concentrations above the target value of 120 $\mu g/m^3$ in more than 25 to 50 days in a calendar year. Percentage of exposure at concentrations above the target value of 120 $\mu g/m^3$ in more than 25 to 50 days in a calendar year was recorded during the entire reporting period, except in 2005, 2012 and 2014.

Methodology

For each measuring station located in urban environment, the number of days in which the maximum daily 8-hourly mean concentration of ozone is in excess of ozone target value for human health protection - $120 \, \mu g/m^3$ is calculated. Selected urban stations include stations of the following types: stations measuring traffic pollution, stations measuring industrial pollution and urban

background stations. The number of days with excess in a city is obtained by averaging the results of all stations located in that city.

Uncertainty

Methodological uncertainty and data uncertainty

In general, data is not representative for all urban environments in the Republic of Macedonia. Compared to the methodology of the European Environmental Agency, where the calculation of the indicator is based only on data produced by the urban background stations, in our calculations we used data from all measuring stations located in urban environments. Also, due to the minimum number of monitoring stations, the calculation of the indicator also took into account the stations where data coverage is below 75% per calendar year. We can also point out as uncertainty in the indicator calculation the fact that the number of inhabitants in cities is based on the census of the population conducted by the State Statistical Office in 2002, instead of estimated number of population for each year.

Policy relevance of the indicator

List of relevant policy documents

The National Plan for Air Protection presents the state of air quality, defines the measures for ambient air quality protection and improvement in the Republic of Macedonia and all relevant institutions responsible for their implementation within 5 year period, namely from 2013 to 2018 (Official Gazette of the Republic of Macedonia no.170/2012).

Legal grounds

The Law on Ambient Air Quality was adopted in August 2004 and later amended on several occasions in line with the requirements of the relevant EU legislation (Official Gazette of the Republic of Macedonia Nos. 67/2004, 92/2007, 83/2009, 35/2010, 47/2011 and 59/2012) and it is framework law in the area of air. The main goals of this Law are: avoidance, prevention and reduction of harmful effects on human health and environment as a whole, prevention and reduction of pollution resulting in climate change, as well as provision of the relevant information on the quality of ambient air. This Law establishes the legal grounds for adoption of a number of bylaws in line with the requirements of the relevant *Acquis Communitaire*. So far, 16 bylaws have been adopted. Calculations for this indicator are based on the provisions of the Decree on the limit values of levels and types of polluting substances in ambient air and on the alert thresholds, deadlines for the limit values achievement, margins of limit value tolerance, target values and long-term ozone targets (Official Gazette of the Republic of Macedonia No. 50/05, 4/2013).

Targets

The Decree on the limit values of levels and types of polluting substances in ambient air and on the alert thresholds, deadlines for the limit values achievement, margins of limit value tolerance, target values and long-term targets, defines the limit values for SO_2 , PM_{10} , NO_2 and target values for O_3 .

Target values for ozone concentrations in ambient air

The said Decree, with regard to ozone, specifies target value for the purpose of human health protection and long-term target for the purpose of human health protection.

• The target value for ozone, for the purpose of human health protection, is specified so that 8-hourly mean value is calculated from the hourly concentrations in each day. The maximum daily 8-hourly mean value of ozone shall not exceed the value of 120 μg/m³ in

- more than 25 days in the course of the year (calculated as an average value for three years). This target value should be achieved by 2010.
- The Decree also defines long-term target for the purpose of human health protection, set at $120 \,\mu\text{g/m}^3$, as maximum daily 8-hourly mean value during a calendar year.

Reporting obligation

European Environmental Agency

 Air quality data exchange in accordance with implementing Decision containing the rules of Directives 2004/10/EC and 2008/50/EC of the European Parliament and of the Council concerning reciprocal exchange of information I reporting on ambient air quality (Decision 2011/850/EC).

General metadata

Code	Title of the indicator	Compliance with CSI EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MKNI 004	Exceedance of air quality limit values in urban areas	CSI 004	Exceedance of air quality limit values in urban areas	S	A	air air quality	annual

MK - NI 004

EXCEEDANCE OF AIR QUALITY LIMIT VALUES IN URBAN AREAS - PM₁₀

Definition

The indicator shows the portion of urban population potentially exposed at ambient air concentrations of pollutants in excess of the limit value set for human health protection.

Urban population taken into account is actually the total number of inhabitants living in cities with at least one monitoring station. These cities include the capital and other major cities of the Republic of Macedonia. The number of inhabitants is based on the last census carried out by the State Statistical Office in 2002.

Exceedance of air quality limit values occurs when the concentration of air pollutants exceeds the limit values for SO_2 , PM_{10} , NO_2 and the target values for O_3 as specified in the Decree on the limit values of levels and types of polluting substances in ambient air and on the alert thresholds, deadlines for the limit values achievement, margins of limit value tolerance, target values and long-term ozone targets (Official Gazette of the Republic of Macedonia No. 50/05, 4/2013), wherein the requirements of the Directive on Ambient Air Quality and Cleaner Air in Europe 2008/50 EC and Heavy Metals Directive 2004/107/EC have been transposed. Where there are multiple limit values (see section on Policy Targets), the indicator uses the most stringent case:

- Sulphur dioxide (SO₂): the daily mean limit value
- Nitrogen dioxide (NO₂): the annual limit value
- Particulate matter of a size up to 10 micrometer (PM_{10}): the daily mean limit value
- Ozone (O₃): the short term objective

Units

The percentage of urban population potentially exposed at ambient air concentrations of sulphur dioxide (SO_2), particulate matter sized up to 10 micrometer (PM_{10}), nitrogen dioxide (NO_2) and ozone (O_3) above limit values set for human health protection. Ambient air concentrations of sulphur dioxide (SO_2), particulate matter sized up to 10 micrometer (PM_{10}), nitrogen dioxide (NO_2) and ozone (O_3) are expressed in microgram/ m^3 (µg/ m^3).

Key policy issue

What progress has been achieved in reducing the concentrations of pollutants in urban areas in order to achieve the limit values for PM_{10} set in the Decree?

Key message

In the period from 2004 to 2015, 100% of the population has been exposed at concentrations of suspended particulate matter in excess of the limit values specified in the Decree. Significantly higher concentrations of PM_{10} are measured during winter period.

Diagram 1: Percentage of urban population exposed at air pollution in areas where concentrations of pollutants are in excess of limit/target values

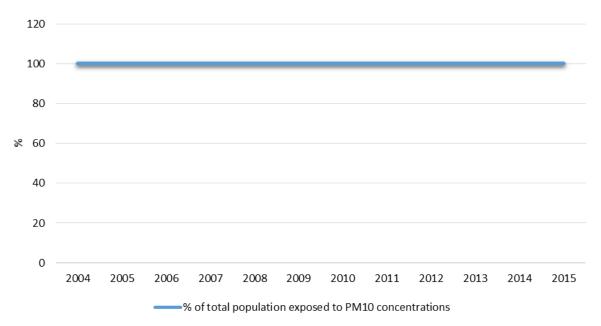


Diagram 2: Percentage of urban population exposed at concentrations of PM10 above the daily mean limit value, expressed as number of days in the course of a calendar year

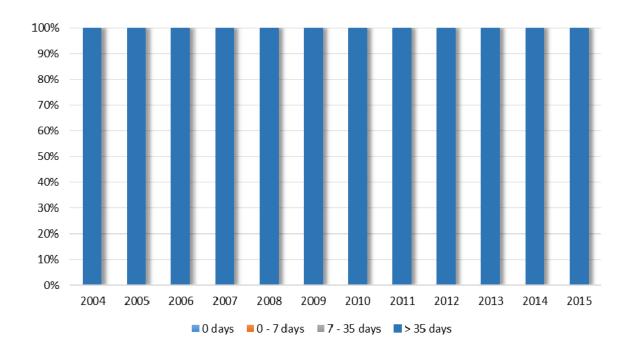
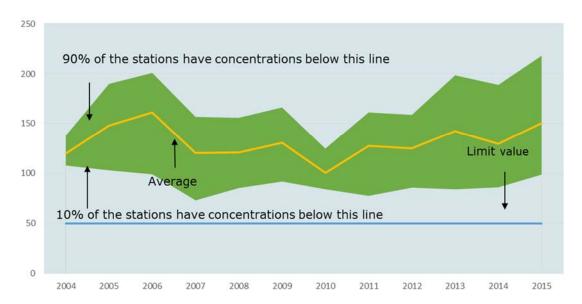



Diagram 3: 36th highest mean daily concentration of PM10

μg PM10/m³

Data coverage: **exce**

Source: Ministry of Environment and Physical Planning

Assessment

Suspended particulate matters of size up to 10 micrometers are particles able to pass through an opening conducting selection by size, with 50% loss in efficiency at aerodynamic diameter of size less than ten micrometers (10 μ m). These particles of size not exceeding 10 micrometers are the so called fine particles or aerosols. Their retention time in the air is long and they originate from natural and anthropogenic sources. Among natural sources, the more prominent include yellow rains, present also with us, forest fires and chemical reactions going on in nature. Combustion of coal, wood and oil, industrial processes, transport and waste burning are the most significant anthropogenic sources.

Increased concentrations of suspended particulate matters can be recorded in urban areas, especially in autumn-winter seasons, which is most probably due to increased frequency in traffic, fossil fuels combustion and meteorological conditions.

The processed data for the period 2004 to 2015 show that during the entire period, 100% of the population was exposed at concentrations of suspended particulate matters are in excess of the limit value (mean daily limit value of $50 \, \mu g/m^3$ that shall not be exceeded in more than 35 days in the course of a calendar year). 100% of the population was exposed at concentrations above the limit value in more than 35 days in a calendar year.

Methodology

Methodology for the indicator calculation

For each urban measuring station, the number of days with daily mean concentration above the limit value (daily mean limit value is $50 \, \mu g/m^3$) is calculated from the available hourly data. Selected urban stations include stations of the following types: stations measuring traffic pollution, stations measuring industrial pollution and urban background stations. The number of days with exceedance in a city is obtained by averaging the mean values of the results from all stations located in that city.

Uncertainty

Methodological uncertainty and data uncertainty

In general, data is not representative for all urban environments in the Republic of Macedonia. Compared to the methodology of the European Environmental Agency, where the calculation of the indicator is based only on data produced by the urban background stations, in our calculations we used data from all measuring stations located in urban environments. Also, due to the minimum number of monitoring stations, the calculation of the indicator also took into account the stations where data coverage is below 75% per calendar year. We can also point out as uncertainty in the indicator calculation the fact that the number of inhabitants in cities is based on the census of the population conducted by the State Statistical Office in 2002, instead of estimated number of population for each year.

Policy relevance of the indicator

List of relevant policy documents

The National Plan for Air Protection presents the state of air quality, defines the measures for ambient air quality protection and improvement in the Republic of Macedonia and all relevant institutions responsible for their implementation within 5 year period, namely from 2013 to 2018 (Official Gazette of the Republic of Macedonia no.170/2012).

Legal grounds

The Law on Ambient Air Quality was adopted in August 2004 and later amended on several occasions in line with the requirements of the relevant EU legislation (Official Gazette of the Republic of Macedonia Nos. 67/2004, 92/2007, 83/2009, 35/2010, 47/2011 and 59/2012) and it is framework law in the area of air. The main goals of this Law are: avoidance, prevention and reduction of harmful effects on human health and environment as a whole, prevention and reduction of pollution resulting in climate change, as well as provision of the relevant information on the quality of ambient air. This Law establishes the legal grounds for adoption of a number of bylaws in line with the requirements of the relevant *Acquis Communitaire*. So far, 12 bylaws have been adopted. Calculations for this indicator are based on the provisions of the Decree on the limit values of levels and types of polluting substances in ambient air and on the alert thresholds, deadlines for the limit values achievement, margins of limit value tolerance, target values and long-term ozone targets (Official Gazette of the Republic of Macedonia No. 50/05, 4/2013).

Targets

The Decree on the limit values of levels and types of polluting substances in ambient air and on the alert thresholds, deadlines for the limit values achievement, margins of limit value tolerance, target values and long-term targets, defines the limit values for SO_2 , PM_{10} , NO_2 and target values for O_3 .

Limit values for concentrations of suspended particulate matter of size up to 10 micrometers in the ambient air

The said Decree specifies two limit values for suspended particulate matter of size up to 10 micrometers, for the purpose of human health protection.

- 24-hourly limit value is 50 µg/m³, and it shall not be exceeded by more than 35 times during one calendar year
- The mean annual concentration shall not exceed 40 μg/m³.

Reporting obligation

European Environmental Agency

 Air quality data exchange in accordance with implementing Decision containing the rules of Directives 2004/10/EC and 2008/50/EC of the European Parliament and of the Council concerning reciprocal exchange of information I reporting on ambient air quality (Decision 2011/850/EC).

General metadata

Code	Title of the indicator	Compliance with CSI EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 004	Exceedance of air quality limit values in urban areas	CSI 004	Exceedance of air quality limit values in urban areas	S	A	air Air quality	annual

MK - NI 004

EXCEEDANCE OF AIR QUALITY LIMIT VALUES IN URBAN AREAS - SO₂

Definition

The indicator shows the portion of urban population potentially exposed at ambient air concentrations of pollutants in excess of the limit value set for human health protection.

Urban population taken into account is actually the total number of inhabitants living in cities with at least one monitoring station. These cities include the capital and other major cities of the Republic of Macedonia. The number of inhabitants is based on the last census carried out by the State Statistical Office in 2002.

Exceedance of air quality limit values occurs when the concentration of air pollutants exceeds the limit values for SO_2 , PM_{10} , NO_2 and the target values for O_3 as specified in the Decree on the limit values of levels and types of polluting substances in ambient air and on the alert thresholds, deadlines for the limit values achievement, margins of limit value tolerance, target values and long-term ozone targets (Official Gazette of the Republic of Macedonia No. 50/05, 4/2013), wherein the requirements of the Directive on Ambient Air Quality and Cleaner Air in Europe 2008/50 EC and Heavy Metals Directive 2004/107/EC have been transposed. Where there are multiple limit values (see section on Policy Targets), the indicator uses the most stringent case:

- Sulphur dioxide (SO₂): the daily mean limit value
- Nitrogen dioxide (NO₂): the annual limit value
- Particulate matter of a size up to 10 micrometer (PM₁₀): the daily mean limit value
- Ozone (O₃): the short term objective

Units

The percentage of urban population potentially exposed at ambient air concentrations of sulphur dioxide (SO_2), particulate matter sized up to 10 micrometer (PM_{10}), nitrogen dioxide (NO_2) and ozone (O_3) above limit values set for human health protection. Ambient air concentrations of sulphur dioxide (SO_2), particulate matter sized up to 10 micrometer (PM_{10}), nitrogen dioxide (NO_2) and ozone (O_3) are expressed in microgram/ m^3 (µg/ m^3).

Key policy issue

What progress has been achieved in reducing the concentrations of pollutants in urban areas in order to achieve the limit values for SO₂ in the Decree?

Key message

No excess of mean daily concentrations of sulphur dioxide was recorded in the period from 2004 to 2015, i.e. the population was not exposed at sulphur dioxide concentrations above limit value, except in 2006 when out of the allowed 3 days, exceedance of the limit value was recorded in the course of 8 days in Skopje, which was not seen as significant problem.

Diagram 1: Percentage of urban population exposed at air pollution in areas where concentrations of pollutants are in excess of limit/target values

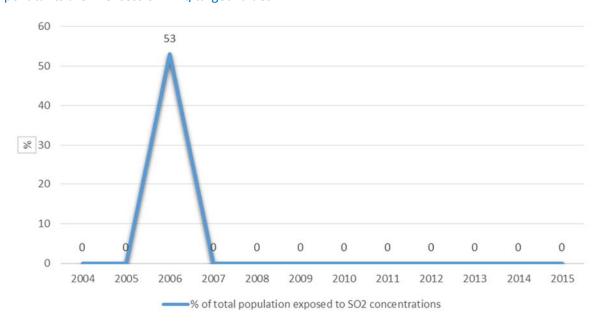


Diagram 2: Percentage of urban population exposed at concentrations of SO2 above the daily mean limit value expressed as number of days in the course of a calendar year

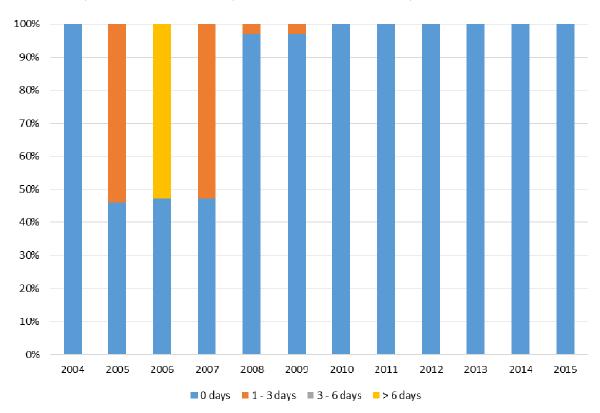
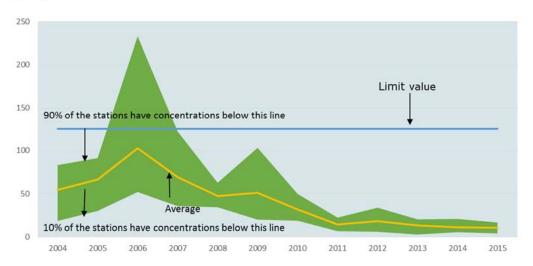



Diagram 3: 4th highest average mean daily concentration of SO2

Data coverage: **exce**

Source: Ministry of Environment and Physical Planning

Assessment

Sulphur dioxide in the air most frequently originates from major thermal power plants, as well as from small and medium size boilers for coal combustion in urban environments. The main anthropogenic sources include coal and oil combustion. This pollutant is also released in the air from industrial processes (production of cellulose and paper, sulphuric acid, lead and zinc ores smelting).

In the period 2004 to 2015, there have been no concentrations above the daily mean limit value for sulphur dioxide, i.e. population was not exposed at sulphur dioxide concentrations above the limit value, except in 2006 when out of the allowed 3 days, exceedance of the limit value was recorded in the course of 8 days in Skopje, which was not seen as significant problem.

In 2006, 53% of the population was exposed at sulphur dioxide concentration above125 2g/m³for more than 6 days in the course of the year. In 2005 and 2007, there was higher percentage (around 50%) of the population exposed at sulphur dioxide concentration above 125 2g/m³ for 1 to 3 days in the course of the year, while in 2008 and 2009, this percentage of population exposure was very low (3%).

Methodology

Methodology for the indicator calculation

For each measuring station located in urban environment, the number of days with mean daily concentration higher than the limit value (daily mean value of125 $\mathbb{Z}g/m^3$) is calculated from the available hourly data. Selected urban stations include stations of the following types: stations measuring traffic pollution, stations measuring industrial pollution and urban background stations. The number of days with excess in a city is obtained by averaging the results of all stations located in that city.

Uncertainty

Methodological uncertainty and data uncertainty

In general, data is not representative for all urban environments in the Republic of Macedonia. Compared to the methodology of the European Environmental Agency, where the calculation of the indicator is based only on data produced by the urban background stations, in our calculations we used data from all measuring stations located in urban environments. Also, due to the minimum number of monitoring stations, the calculation of the indicator also took into account the stations where data coverage is below 75% per calendar year. We can also point out as uncertainty in the indicator calculation the fact that the number of inhabitants in cities is based on the census of the population conducted by the State Statistical Office in 2002, instead of estimated number of population for each year.

Policy relevance of the indicator

List of relevant policy documents

The National Plan for Air Protection presents the state of air quality, defines the measures for ambient air quality protection and improvement in the Republic of Macedonia and all relevant institutions responsible for their implementation within 5 year period, namely from 2013 to 2018 (Official Gazette of the Republic of Macedonia no.170/2012).

Legal grounds

The Law on Ambient Air Quality was adopted in August 2004 and later amended on several occasions in line with the requirements of the relevant EU legislation (Official Gazette of the Republic of Macedonia Nos. 67/2004, 92/2007, 83/2009, 35/2010, 47/2011 and 59/2012) and it is framework law in the area of air. The main goals of this Law are: avoidance, prevention and reduction of harmful effects on human health and environment as a whole, prevention and reduction of pollution resulting in climate change, as well as provision of the relevant information on the quality of ambient air. This Law establishes the legal grounds for adoption of a number of bylaws in line with the requirements of the relevant *Acquis Communitaire*. So far, 12 bylaws have been adopted. Calculations for this indicator are based on the provisions of the Decree on the limit values of levels and types of polluting substances in ambient air and on the alert thresholds, deadlines for the limit values achievement, margins of limit value tolerance, target values and long-term ozone targets (Official Gazette of the Republic of Macedonia No. 50/05, 4/2013).

Targets

The Decree on the limit values of levels and types of polluting substances in ambient air and on the alert thresholds, deadlines for the limit values achievement, margins of limit value tolerance, target values and long-term targets, defines the limit values for SO_2 , PM_{10} , NO_2 and target values for O_3 .

Limit values for concentrations of sulphur dioxide in ambient air

In accordance with the said Decree, two limit values are specified for sulphur dioxide for the purpose of human health protection.

- Mean daily limit value of 125 µg/m³ which shall not be exceeded by more than three times during one calendar year
- Hourly limit value of 350 µg/m³, which shall not be exceeded by more than 24 times during one calendar year.

Reporting obligation

European Environmental Agency

 Air quality data exchange in accordance with implementing Decision containing the rules of Directives 2004/10/EC and 2008/50/EC of the European Parliament and of the Council concerning reciprocal exchange of information I reporting on ambient air quality (Decision 2011/850/EC).

General metadata

Code	Title of the indicator	Compliance with CSI EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 004	Exceedance of air quality limit values in urban areas	CSI 004	Exceedance of air quality limit values in urban areas	S	A	air Air quality	annual

MK - NI 004

EXCEEDANCE OF AIR QUALITY LIMIT VALUES IN URBAN AREAS — By monitoring station

Definition

This indicator shows:

- Number of days during year when the level of air pollution (for the pollutants: suspended particulate matters sized up to 10 micrometers (PM₁₀), sulphur dioxide (SO₂), nitrogen dioxide (NO₂), and ground ozone (O₃)) exceeds the prescribed limit values (maximum permissible annual and short-term concentrations in urban areas where regular observation of air quality is performed).
- Portion of urban population living in urban areas with at least one monitoring station) in the country exposed at air pollution above the set limit values.
- Absolute values of the concentration of pollutants in the air.

Units

Number of days

Ambient air concentrations of sulphur dioxide (SO_2), particulate matter sized up to 10 micrometer (PM_{10}), nitrogen dioxide (NO_2) and ozone (O_3) are expressed in microgram/m³ ($\mu g/m^3$).

Key policy issue

What progress has been achieved in reducing the concentrations of pollutants in urban areas in order to achieve the limit values (for SO_2 , PM_{10} , NO_2) and target values (for O_3) set in the Decree?

Key message

Suspended particulate matters sized up to 10 micrometers (PM10)

Concentrations of suspended particulate matters sized up to 10 micrometers exceed limit values specified in the Decree at the analyzed measuring points. High concentrations of suspended particulate matters sized up to 10 micrometers occur frequently, especially during winter period. Highest concentrations of PM10 have been measured in Skopje.

Nitrogen dioxide (NO₂)

In the period 2004 to 2015, decreasing trend was observed for the concentrations of nitrogen dioxide. Measured concentrations of this pollutant exceed specified limit value only in Skopje.

Sulphur dioxide (SO₂)

In the period 2004 to 2015, decreasing trend was observed for the mean annual concentration at all measuring points. Also, the mean daily limit value for sulphur dioxide was not exceeded, i.e. population was not exposed at concentrations of sulphur dioxide above the limit value at all analyzed measuring points.

Ozone (O₃)

In the period 2004 to 2015, the highest concentrations of ozone were recorded in Bitola, due to the fact that the city is situated in southwestern part of the country with higher number of sunny days during the year. Ozone concentrations measured in Skopje throughout the analyzed period were significantly lower compared to ozone concentrations measured in Bitola and Veles.

Diagram 1: Mean annual concentration of PM10

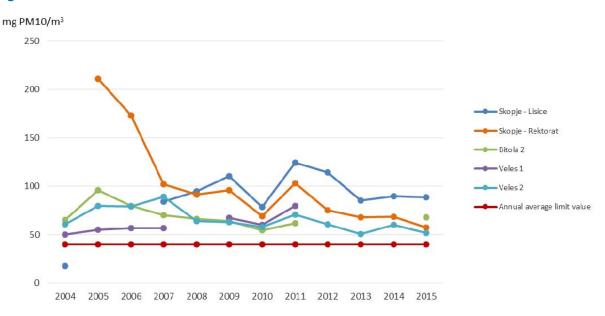


Diagram 2: Mean annual concentration of NO₂

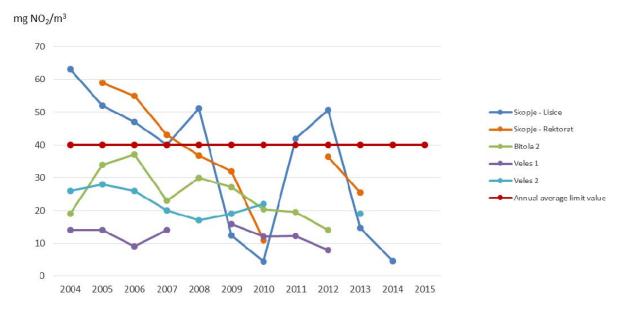


Diagram 3: Mean annual concentration of SO₂

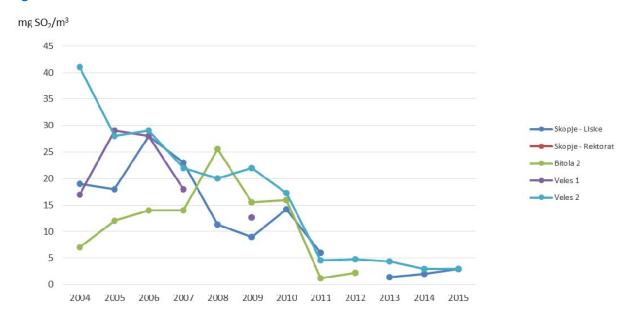
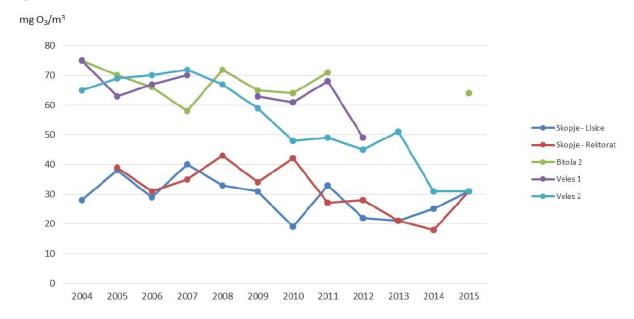



Diagram 4: Mean annual concentration of O₃

Data coverage: **exce**

Source: Ministry of Environment and Physical Planning

Assessment

Suspended particulate matters (PM₁₀)

Suspended particulate matters of size up to 10 micrometers are particles able to pass through an opening conducting selection by size, with 50% loss in efficiency at aerodynamic diameter of size less than ten micrometers (10 μ m). These particles of size not exceeding 10 micrometers are the so called fine particles or aerosols. Their retention time in the air is long and they originate from natural and anthropogenic sources. Among natural sources, the more prominent include yellow rains, present also with us, forest fires and chemical reactions going on in nature. Combustion of coal, wood and oil,

industrial processes, transport and waste burning are the most significant anthropogenic sources.

Increased concentrations of suspended particulate matters can be recorded in urban areas, especially in autumn-winter seasons, which is most probably due to increased frequency in traffic, fossil fuels combustion and meteorological conditions.

Based on data processed for the period 2004-2015, we may conclude that throughout the period, the population was exposed at concentrations of suspended particulate matters exceeding limit values (mean limit value of 50 μ g/m³ which should not be exceeded in more than 35 days during a calendar year and annual limit value of 40 μ g/m³). Highest concentrations of this pollutant were recorded in Skopje, which was most probably due to human lifestyle, dense population, intensive use of solid fuel for households heating during winter, as well as impacts of industry.

Nitrogen dioxide (NO2)

Investigations have testified the presence of several nitrogen oxides in the air, but the most significant among them are nitrogen dioxide and nitrogen monoxide. These pollutants most often originate from natural sources. However, in urban environments, the main source is the traffic, and industry is minor source. The most toxic of all nitrogen oxides is the nitrogen dioxide, the concentrations of which are dependent on season and meteorological conditions. Namely, concentration of NO is higher in morning hours when the traffic is more frequent, while the intensification of solar radiation during the day leads to transformation of NO into NO₂ resulting in increased concentration of NO₂. Nitrogen oxides influence the content of ozone and other photochemical oxidants in the air. During the spring-summer period, the concentration of NO₂ is higher, while in autumn-winter period, the concentration of NO is higher. The quantity of NO₃ increases in winter period due to the higher frequency of traffic.

Data processed indicate that the mean annual concentration of nitrogen dioxide was exceeded only in Skopje, which was most probably due to high frequency of traffic and operation of industrial facilities.

Sulphur dioxide (SO2)

Sulphur dioxide in the air most frequently originates from major thermal power plants, as well as from small and medium size boilers for coal combustion in urban environments. The main anthropogenic sources include coal and oil combustion. This pollutant is also released in the air from industrial processes (production of cellulose and paper, sulphuric acid, lead and zinc ores smelting).

In the period 2004 to 2015, there was no exceeding of the mean daily limit value for sulphur dioxide, i.e. population was not exceeded at concentrations of sulphur dioxide above the limit value at all analyzed measuring points.

Ozone - O3

Ozone layer is positioned at height of 10 km to 15 km from Earth and it plays the role of a filter for UV radiation and climate stabilizer.

Automatic monitoring stations measure the ground-level ozone formed as a result of photochemical reactions involving nitrogen oxides, volatile organic compounds (most frequently hydrocarbons), etc. However, its content is also dependent on solar radiation and annual seasons. Thus, higher ozone concentrations are observed in warmer days, especially during summer.

In the period 2004 to 2015, the highest concentrations of ozone were recorded in Bitola, due to the fact that the city is situated in southwestern part of the country with higher number of sunny days during the year. Ozone concentrations measured in Skopje throughout the analyzed period were significantly lower compared to ozone concentrations measured in Bitola and Veles.

Methodology

Methodology for the indicator calculation

Calculation of the indicator takes into account data from conducted measurements of the quality of the air in the following three cities: Skopje, Bitola and Veles, as the most representative sites reflecting the state of air quality in the Republic of Macedonia. Skopje was selected as capitol and the largest urban area in the country and big industrial centre. Bitola is second in size city and the largest thermal power plant REK Bitola is located in its vicinity and Veles as city with great historical industrial pollution.

For each selected urban station, the type of station is specified (urban background, station measuring air pollution from traffic, station measuring air pollution from industry). Then, the following is calculated for each pollutant from the available hourly data: mean annual concentration, highest mean daily concentration and number of days with exceeded mean daily limit value.

Uncertainty

Methodological uncertainty and data uncertainty

Calculations of the indicator have also taken into consideration stations where data coverage is below 75% per calendar year.

Policy relevance of the indicator

List of relevant policy documents

The National Plan for Air Protection presents the state of air quality, defines the measures for ambient air quality protection and improvement in the Republic of Macedonia and all relevant institutions responsible for their implementation within 5 year period, namely from 2013 to 2018 (Official Gazette of the Republic of Macedonia no.170/2012).

Legal grounds

The Law on Ambient Air Quality was adopted in August 2004 and later amended on several occasions in line with the requirements of the relevant EU legislation (Official Gazette of the Republic of Macedonia Nos. 67/2004, 92/2007, 83/2009, 35/2010, 47/2011 and 59/2012) and it is framework law in the area of air. The main goals of this Law are: avoidance, prevention and reduction of harmful effects on human health and environment as a whole, prevention and reduction of pollution resulting in climate change, as well as provision of the relevant information on the quality of ambient air. This Law establishes the legal grounds for adoption of a number of bylaws in line with the requirements of the relevant *Acquis Communitaire*. So far, 12 bylaws have been adopted. Calculations for this indicator are based on the provisions of the Decree on the limit values of levels and types of polluting substances in ambient air and on the alert thresholds, deadlines for the limit values achievement, margins of limit value tolerance, target values and long-term ozone targets (Official Gazette of the Republic of Macedonia No. 50/05, 4/2013).

Targets

The Decree on the limit values of levels and types of polluting substances in ambient air and on the alert thresholds, deadlines for the limit values achievement, margins of limit value tolerance, target values and long-term targets, defines the limit values for SO₂, PM₁₀, NO₂ and target values for O₃.

Limit values for concentrations of sulphur dioxide in ambient air

In accordance with the said Decree, two limit values are specified for sulphur dioxide for the purpose of

human health protection.

- Mean daily limit value of 125 $\mu g/m^3$ which shall not be exceeded by more than three times during one calendar year
- Hourly limit value of 350 µg/m³, which shall not be exceeded by more than 24 times during one calendar year.

Limit values for concentrations of nitrogen dioxide in ambient air

In accordance with the said Decree, two limit values are specified for nitrogen dioxide for the purpose of human health protection.

- Hourly mean concentration of nitrogen dioxide shall not exceed the limit value of 200 μg/m³ by more than 18 times during one calendar year.
- The mean annual concentration shall not exceed 40 μg/m³.

Limit values for concentrations of suspended particulate matter of size up to 10 micrometers in the ambient air

The said Decree specifies two limit values for suspended particulate matter of size up to 10 micrometers, for the purpose of human health protection.

- 24-hourly limit value is 50 µg/m³, and it shall not be exceeded by more than 35 times during one calendar year
- The mean annual concentration shall not exceed 40 μg/m³.

Target values for ozone concentrations in ambient air

The said Decree, with regard to ozone, specifies target value for the purpose of human health protection and long-term target for the purpose of human health protection.

- The target value for ozone, for the purpose of human health protection, is specified so that 8-hourly mean value is calculated from the hourly concentrations in each day. The maximum daily 8-hourly mean value of ozone shall not exceed the value of 120 μg/m³ in more than 25 days in the course of the year (calculated as an average value for three years). This target value should be achieved by 2010.
- The Decree also defines long-term target for the purpose of human health protection, set at $120 \,\mu\text{g/m}^3$, as maximum daily 8-hourly mean value during a calendar year.

Reporting obligation

European Environmental Agency

 Air quality data exchange in accordance with implementing Decision containing the rules of Directives 2004/10/EC and 2008/50/EC of the European Parliament and of the Council concerning reciprocal exchange of information I reporting on ambient air quality (Decision 2011/850/EC).

General metadata

Code	Title of the indicator	Compliance with CSI EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 004	Exceedance of air quality limit values in urban areas – by monitoring station	CSI 004	Exceedance of air quality limit values in urban areas	S	A	air Air quality	annual

MK - NI 050

EMMISSION OF THE MAIN POLLUTING SUBSTANCES - CARBON MONOXIDE (CO)

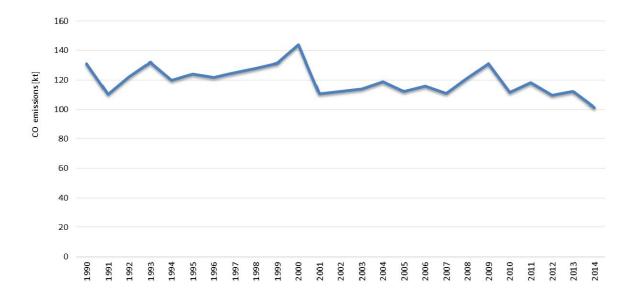
Definition

The indicator tracks the trends in carbon monoxide (CO).

<u>-</u>

Units

kt (kilotons per year)


Key policy issue

What progress has been made in overall reduction of emissions of carbon monoxide in the Republic of Macedonia?

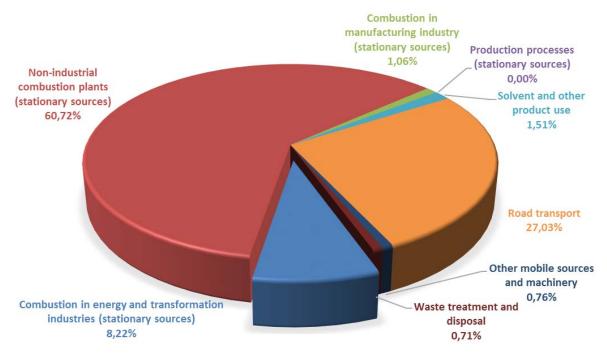
In 1990, the overall national emissions of CO amounted to 131 kt. In comparison, emissions dropped by 23% in 2014 to amount 112 kt. Notable reduction in CO emissions was recorded in 2001 compared to 2000. From 2001 to 2014, the trend did not manifest significant variations.

The Diagram below shows annual trend in the emissions of carbon monoxide for the period 1990 to 2014.

Diagram 1.Trend in emissions of carbon monoxide (CO)

Assessment

Under the CARDS Programme, Inventory of air emissions of the main pollutants in the country was established in 2005 in accordance with the EMEP methodology by individual sectors, i.e. activities, and in 2014 Inventory including all pollutants was prepared.


Sectors based on the above mentioned methodology and SNAP – selective nomenclature of air pollution are presented in the table below:

SNAP	Sector				
1	Combustion in energy and transformation industries				
2	Non-industrial combustion plants				
3	Combustion in manufacturing industry				
4	Production processes				
5	Extraction and distribution of fossil fuels and geothermal energy				
6	Solvent and other product use				
7	Road transport				
8	Other mobile sources and machinery				
9	Waste treatment				
10	Agriculture				
11	Nature				

Almost all emissions of CO originate from the sector Energy. Thus, the main sources of emission in 2014 were the following NFR categories of sources: 1A4 Other sectors (household heating) and 1A3 Transport with a share of 61% (52% in 1990) and 27% (40% in 1990), respectively in the total national emission of CO. Other important source of CO emission in 2014 was also 1A1 Energy with a share of 8%.

NFR sectors 1A2 Combustion in manufacturing industry, 1C Fugitive emissions, 2 Industrial processes and product use and 5 Waste, are insignificant sources of CO emission.

Diagram 2. Emissions of CO by SNAP sectors per year in 2014

Policy specific issue

Which different sectors and processes contribute to carbon monoxide emissions?

Almost all emissions of CO originate from the sector Energy, mainly from 1A4 Other sectors (household heating) and 1A3 Transport (road transport), and less from combustion in power plants (1A1). The diagram below shows reduction in the overall emissions of CO in 2001 compared to 2000, attributed to lower consumption of fuel in the sector 1A4 Other sectors (household heating). The reason for emission reduction in the period 2010-2014 compared to other reasons was reduction in emissions from sector

1A3 Transport (road transport). From 2013 to 2014, emissions dropped by 10%, mainly due to warmer winter resulting in lower consumption of fuel wood.

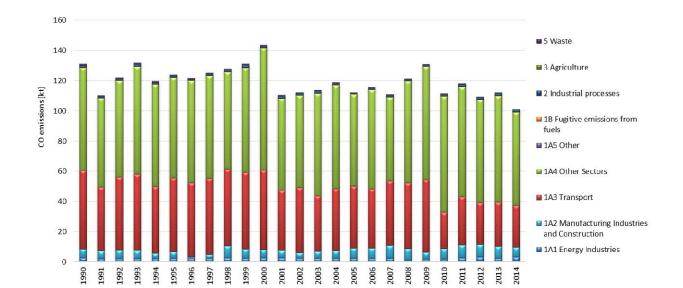


Diagram 3. Emissions of CO by NFR sectors per year

Data coverage: **excel**

Sources of data:

The data used refers to overall national emissions and emissions categorized by NFR delivered by EEA member and collaborating states to EEA and Secretariat of the United Nations. Data is accessible per country on the following web address: http://cdr.eionet.europa.eu/mk/un/UNECE_CLRTAP_MK.

Methodology

Methodology for indicator calculation

The methodology for this indicator calculation is based on calculated national emissions and emissions by NFR sectors of this pollutant as reported to EEA (European Environmental Agency) and UNECE/EMEP (United Nations Economic Commission for Europe/Cooperative programme for monitoring and evaluation for transboundary air pollution transfer under the Convention on Transboundary Air Pollution Transfer) in February 2016. Data used in this report is in accordance with the data submitted, the difference being that additional allocation of national emissions has been made apart from NFR (as sent to international organizations) also by SNAP.

Calculations are in line with the Guidebook of EMEP/EEA on air emissions inventory taking published in 2009 and 2013. The Guidebook contains emission factors which have been used in the calculations, except for the energy sector where calculations were made by use of country specific factors or use of data from the measurements completed in the period 2008-2014 for this polluting substance for the sector 1A1a concerning electricity and heat producing plants.

Reference of used methodology

Methodology used for calculation and presentation of this indicator is given in EMEP/EEA Guidebook for inventory of air pollutant emissions of 2009 and Guidebook of 2013 which may be accessed at the following links (http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009

and http://www.eea.europa.eu/publications/emep-eea-guidebook-2013).

Policy relevance of the indicator

Action Plan for European Partnership, as well as National Plan for approximation of the national legislation with European regulations specifying bylaws that need to be prepared have been adopted.

The National Environmental Action Plan (NEAP II) was adopted. It contains the measures that need to be taken to improve the overall status of air quality, including the reduction of emissions of acidifying substances. The National Plan for Ambient Air Protection for the period 2012 to 2017 specifying the measures for air protection on national level and the National Programme for gradual air emissions reduction by 2020 have been adopted in order to define and implement measures on national level.

At the same time, for the purpose of air quality improvement in certain local self-government units (LSGUs) with action plans, pilot program was prepared for the City of Bitola, serving as basis for preparation of local planning documents in other cities. Currently air quality plans and short term action plans for city of Skopje and city of Tetovo are under preparation in the Twining project "Further strengthening the capacities for effective implementation of the acquis in the field of air quality", which should be finalized at the end of 2016.

Targets

Does any of the national documents set target or target should be achieved in accordance with other international documents?

National strategic documents listed as references in the above text provide guidelines and specify actions that should be undertaken as a matter of priority. It is important to mention that bylaws have been prepared in the area of air emissions transposing Directives 96/61/EC, 2000/81/EC, 2000/76/EC, 99/13/EC and 2001/81/EC, ranging between 90 and 100%.

In accordance with the requirements of the UNECE Convention on Long-Range Transboundary Air Pollution, inventory based on EMEP/EEA Guidebook for inventory of polluting substances into the air, setting the target of regular inventory of pollutants in tons per year following the n-2 principle, where n is the current year.

In relation to this polluting substance, the limit values for air quality are set in a bylaw in compliance with the Framework Air Directive 2008/50/EC, while limit values for air emissions are set in a bylaw in compliance with Directives 2001/80/EC, 1999/13/EC and 2000/76/EC.

Legal basis

The Law on Ambient Air Quality adopted in August 2004 and amended several times afterwards (Official Gazette of RM no. 67/2004, 92/2007, 83/2009, 35/10, 47/11, 100/12, 163/2013) is framework law in the area of air. The goals of this Law include avoiding, prevention and reduction of harmful effects on human health and environment as a whole, prevention and abatement of pollutions leading to climate change, as well as provision of appropriate information on the quality of ambient air.

On the basis of the Law on Ambient Air Quality, 16 bylaws were prepared and adopted to introduce limit values for air quality and air emissions, methodology of air quality and air emissions monitoring, manner of preparation of planning documents for air protection against pollution, manner of informing the citizens and international organizations, etc.

In relation to this polluting substance, the limit values and thresholds of assessment compliance with the Framework Air Directive 2008/50/EC are prescribed in the following bylaws: Decree on the limit values for

the levels and types of polluting substances in the ambient air and alert thresholds, deadlines for limit values achievement, margines of tolerance for the limit value, target value ands and long-term objectives and Rulebook on criteria, methods and procedures for ambient air quality assessment.

The limit values for air emissions for certain technological processes are set in the Rulebook on the limit values of permissible levels of emissions and types of polluting substances in waste gases and steams released from stationary sources in the air.

Reporting obligation

- Reporting obligations towards international agreements UNECE-CLRTAP and EEA
- Annual Report of Processed Data on Air Emissions

General metadata

Code	Title of the indicator		ce with CSI EEA er indicators	Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 050	Emissions of the main polluting substances – carbon monoxide (CO)	UNECE	A1/5 (Carbon monoxide emissions (total stationary and mobile sources))	P	Α	■ air ■ quality of air	annually

MK - NI 050

EMMISSION OF THE MAIN POLLUTING SUBSTANCES - EMISSION OF AMMONIA

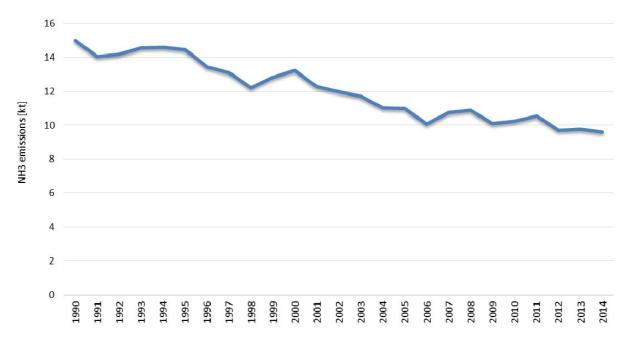
Definition

The indicator tracks the trends in ammonia.

The indicator also provides information on emissions by subsectors in the key sector - agriculture.

Units

kt (kilotons per year)


Key policy issue

What progress has been made in overall reduction of emissions of polluting substance ammonia in the Republic of Macedonia?

In 1990, the overall national emissions of NH_3 amounted to 15 kilotons. In 2014, emissions dropped by 36% and amounted to 10 kilotons. The reasons for the dropping trend of this polluting substance are related mainly to the reduced emissions from agriculture (fertilizer management) which is due to reduction in the number of bred livestock. Emissions noted insignificant reduction by 2% between 2013 and 2014.

The Diagram below shows annual trend in ammonia emissions for the period 1990 to 2014.

Diagram 1.Trend in ammonia emissions

Assessment

Under the CARDS Programme, Inventory of air emissions of the main pollutants in the country was established in 2005 in accordance with the EMEP methodology by individual sectors, i.e. activities, and in 2014 Inventory including all pollutants was prepared.

Sectors based on the above mentioned methodology and SNAP – selective nomenclature of air pollution are presented in the table below:

SNAP	Sector				
1	Combustion in energy and transformation industries				
2	Non-industrial combustion plants				
3	Combustion in manufacturing industry				
4	Production processes				
5	Extraction and distribution of fossil fuels and geothermal energy				
6	Solvent and other product use				
7	Road transport				
8	Other mobile sources and machinery				
9	Waste treatment				
10	Agriculture				
11	Nature				

In the overall emissions of ammonia in 2014, the highest share belonged to SNAP sectors 9 - Agriculture with 89%, followed by sector 2 - Non-industrial combustion plants with 11% and sector 7- Road transport with with 0.3%.

Combustion in energy and transformation industries Non-industrial combustion Road transport (stationary sources) plants (stationary sources) 0,32% 0% 11,05% Combustion in manufacturing industry (stationary sources) Production processes (stationary sources) 0% Extraction and distribution of fossil fuels and geothermal energy 0% Solvent and other product Other mobile sources and machinery Agriculture

Waste treatment and

disposal 0%

Diagram 2. Emissions of NH₃ from agriculture by SNAP sectors per year in 2014

Policy specific issue

Which different sectors and processes contribute to ammonia emissions?

88,63%

Agriculture is the key sector for ammonia emissions. Therefore, Diagram 2 shows emissions from agricultural sector by subsectors, where the main subsectors giving rise to the highest ammonia emissions, such as breeding of poultry, sheep, pigs and cattle are presented separately, while 'other'

summarizes emissions originating from breeding of horses, goats and other poultry, as well as emissions from SNAP sectors 2,7 and 4.

Emissions from livestock breeding originate from urea decomposition in the feces of animals and decomposition of urea in poultry. Ammonia emissions depend on the species of animals, their age, manner of breeding, and waste management and disposal. The main reason for emission reduction is the reduction in the number of bred animals, especially manifested among poultry, sheep, goats and horses owing to declined interest in dealing with livestock breeding activity and increased internal village to town migration of the population.

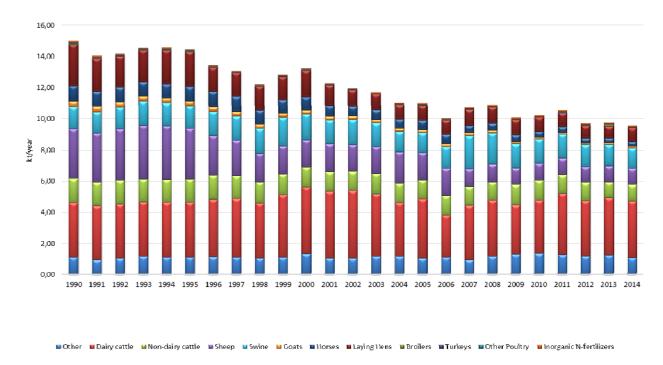


Diagram 3. Emissions of NH₃ from agriculture by NFR sectors per year

Data coverage: **excel**

Sources of data:

The data used refers to overall national emissions and emissions categorized by NFR delivered by EEA member and collaborating states to EEA and Secretariat of the United Nations. Data is accessible per country on the following web address: http://cdr.eionet.europa.eu/mk/un/UNECE CLRTAP MK.

Methodology

Methodology for indicator calculation

The methodology for this indicator calculation is based on calculated national emissions and emissions by NFR sectors of this pollutant as reported to EEA (European Environmental Agency) and UNECE/EMEP (United Nations Economic Commission for Europe/Cooperative programme for monitoring and evaluation for transboundary air pollution transfer under the Convention on Transboundary Air Pollution Transfer) in February 2016. Data used in this report is in accordance with the data submitted, the difference being that additional allocation of national emissions has been made apart from NFR (as sent to international organizations) also by SNAP.

Calculations of the emission of this pollutant are in line with the Guidebooks of EMEP/EEA on air emissions inventory taking published in 2009 and 2013. The Guidebook contains emission factors which have been used in the calculations, except for the energy sector where calculations were made by use of

country specific factors or use of data from the measurements completed in the period 2008-2014 for this polluting substance and for the sector 1A1a concerning electricity and heat producing plants.

Reference of used methodology

Methodology used for calculation and presentation of this indicator is given in EMEP/EEA Guidebook for inventory of air pollutant emissions of 2009 and Guidebook of 2013 which may be accessed at the following links (http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009 and http://www.eea.europa.eu/publications/emep-eea-guidebook-2013).

Policy relevance of the indicator

Action Plan for European Partnership, as well as National Plan for approximation of the national legislation with European regulations specifying bylaws that need to be prepared has been adopted.

The National Environmental Action Plan (NEAP II) was adopted. It contains the measures that need to be taken to improve the overall status of air quality, including the reduction of emissions of acidifying substances. The National Plan for Ambient Air Protection for the period 2012 to 2017 and the National Programme for gradual air emissions reduction by 2020 have been adopted in order to define and implement measures on national level concerning reduction of emissions from agricultural sector which has the highest share in ammonia emissions. At the same time, for the purpose of air quality improvement in certain local self-government units (LSGUs) with action plans, pilot program was prepared for the City of Bitola, serving as basis for preparation of local planning documents in other cities. Currently air quality plans and short term action plans for city of Skopje and city of Tetovo are under preparation in the Twining project "Further strengthening the capacities for effective implementation of the acquis in the field of air quality", which should be finalized at the end of 2016.

In 2007, the Government of the Republic of Macedonia adopted the National Strategy for Agriculture and Rural Development, establishing the principles of the policies for support and measures adapted to expected changes in legislation, institutions and control systems. The Strategy defines strategic goal as basis for development of agricultural and rural sector in the Republic of Macedonia in the period from 2007 to 2013 reading: "to strengthen agriculture to be competitive on integrated regional markets of the European Union and Southeastern Europe through measures aimed at enhancing the efficiency of agricultural production, processing and placement and building of relevant effective public and private institutions; to improve revenues on farm; ensure that consumers have access to safe, healthy food; to optimize the benefit of limited soil, forest and water resources in environmentally favourable manner; and build vital rural communities through sustainable rural development". In 2007, the Government of the Republic of Macedonia adopted the National Strategy for Organic Agricultural Production (2008 - 2011) setting the grounds for introduction and development of organic agricultural production. This Strategy is accompanied with Action Plan of measures and activities for strategy implementation, which have been to a great extent implemented.

National Plan for Organic Production 2013-2020 was adopted. The purpose of the National Plan for Organic Production for the period 2013-2020 is the instrument providing basis for further development of the organic production in the Republic of Macedonia. This National Plan also sets the directions, activities and measures, namely policies to be implemented by MAFWE during the period 2013 -2020 concerning future development of organic production in the Republic of Macedonia and also provides basis for planning and implementation of financial support in this sector.

National Strategy for Agriculture and Rural Development for the period 2014-2020 was adopted. It reflects the state in the Republic of Macedonia and the interest of the country in agriculture and rural areas development through improvement of current policies and enhancement in their efficiency.

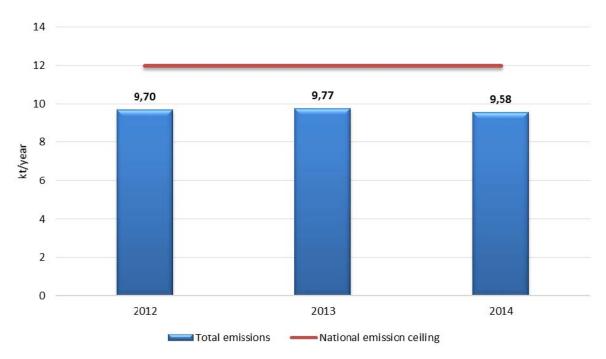
The Law on Agricultural Land stipulates measures for agricultural land fertility improvement through undertaking agritechnical measures, and one of these measures is application of mineral fertilizers. It is stated that protection of agricultural land against pollution and infection is carried out by prohibition,

restriction and prevention of direct inlet of harmful matters in soil, water and air and undertaking of other measures to maintain and improve productivity. It is specified that protection of agricultural land from contamination and infection are subject of application of regulations for environment and nature protection and improvement.

The Law on Fertilizers regulates the manner of fertilizers use. This is especially important for ammonia emissions reduction from the use of nitrogen artificial; fertilizers.

As far as ammonia emissions from traffic are concerned, in accordance with the Strategy for Energy, renewal of vehicle fleet has been envisaged with expectation for use of vehicles with secondary catalysts with lower NH₃ emission levels in future.

Targets


Does any of the national documents set target or target should be achieved in accordance with other international documents?

National strategic documents listed as references in the above text provide guidelines and specify actions that should be undertaken as a matter of priority. It is important to mention that bylaws have been prepared in the area of air emissions transposing Directives 96/61/EC, 2000/81/EC, 2000/76/EC, 99/13/EC and 2001/81/EC, ranging between 90 and 100%.

In accordance with the requirements of the UNECE Convention on Long-Range Transboundary Air Pollution, inventory based on EMEP/EEA Guideline for inventory of polluting substances into the air, setting the target of regular inventory of pollutants in tons per year following the n-2 principle, where n is the current year.

Also, in accordance with Directive 2001/81/EC, as well as Gothenburg Protocol, the ceilings of the amounts of emissions have been set at the level of the Republic of Macedonia for 2010 that shall not be exceeded at the annual level of 2010. The Executive Body of the Convention on Long-Range Transboundary Air Pollution, upon submission of the values of national ceilings in order to enrol the Republic of Macedonia in Annex II of the Gothenburg Protocol requested correction of the values considering the reported data on air emissions of the pollutants sulfur dioxide and ammonia at national level. Changes in the values of these pollutants were incorporated in the Rulebook amending the Rulebook on upper limits – emission ceilings of pollutants for the purpose of setting projections for certain period concerning reduction of the quantities of pollutant emissions at annual level published in July 2014. The national upper limits – ceiling for NO₃ has not been exceeded for the last three years.

Diagram 4. National NH3 emissions for the period 2012-2014 compare to the national emission ceiling

With regard to targets – emission projections for NO_3 for 2020, it should be pointed out that they do not take into account emissions from nitrogen artificial fertilizers and therefore review of projections has been planned for the period 2015-2016 and these are not included in this report.

Legal basis

The Law on Ambient Air Quality adopted in August 2004 and amended several times afterwards (Official Gazette of RM no. 67/2004, 92/2007, 83/2009, 35/10, 47/11, 100/12, 163/2013) is framework law in the area of air. The goals of this Law include avoiding, prevention and reduction of harmful effects on human health and environment as a whole, prevention and abatement of pollutions leading to climate change, as well as provision of appropriate information on the quality of ambient air.

On the basis of the Law on Ambient Air Quality, 16 bylaws were prepared and adopted to introduce limit values for air quality and air emissions, methodology of air quality and air emissions monitoring, manner of preparation of planning documents for air protection against pollution, manner of informing the citizens and international organizations, etc.

With reference to air standards transposed in part of the mentioned rulebooks, 86 ISO and 48 CEN standards in the area of air emissions and air quality were adopted by means of endorsement method.

Other legislation related to the regulation of air quality and air emissions regulation includes the Law on Vehicles, Law on Standardization, Rulebook on liquid fuels quality with national standards for liquid fuels quality, etc

In 2007, the Law on Agriculture and Rural Development was adopted as basic horizontal act regulating areas of planning and implementation of agricultural and rural development policy, as well as other aspects of agricultural and rural development policy.

Amendments of the Law on Agriculture and Rural Development in 2010 further harmonized and integrated the principles of programming, monitoring and implementation of the policy of the Republic of Macedonia for agriculture and rural development with the European Common Agricultural Policy.

The Law includes provisions for programming and implementing the policy of state aid, as well as provisions for application of the measures for rural development.

The framework of organic agricultural production is defined in the Law on Organic Agricultural

Production. A number of bylaws were adopted under this Law in 2010, regulating the areas of production, processing, labeling of organic products, authorization and certification, as well as control systems. Also, the Law on Agriculture Development Fostering, the Law on Environment and the Law on Nature Protection are of relevance.

The above documents provide basis for achievement of the targets for emission reduction of pollutants that are ozone precursors, accompanied with reduced degradation of environment and negative effects on human health.

Reporting obligation

- Reporting obligation towards UNECE-CLRTAP and EEA
- Annual Report of Processed Data on Air Emissions

General metadata

Code	Title of the indicator	Compliance with CSI EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
	Emissions of the main		Ammonia			■ air	
MK NI 050	polluting substances –	APE 003	(NH3)	P	Α	quality of	annually
	ammonia (NH₃)		emissions			air	

MK - NI 050

EMMISSION OF THE MAIN POLLUTING SUBSTANCES - EMISSION OF NON-METHANE VOLATILE ORGANIC COMPOUNDS (NMVOC)

Definition

The indicator tracks the trends in non-methane volatile organic compounds (NMVOC).

Units

kt (kilotons per year)

Key policy issue

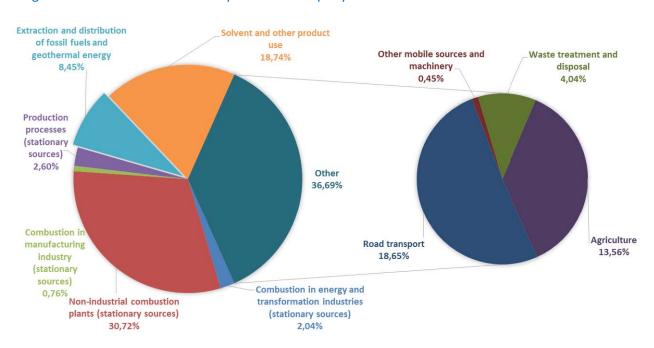
What progress has been made in overall reduction of emissions of non-methane volatile organic compounds in the Republic of Macedonia?

In 1990, the overall national emissions of NMVOCs amounted to around 44 kt. In 2014, emissions dropped by around 30 kt. The reasons for the dropping are related mainly to the reduced emissions from transport and use of solvents. From 2013 to 2014, emissions dropped by 16% also due to reduced use of solvents, as well as slightly lower emissions from the sectors of households.

The Diagram below shows annual trend in the emissions of non-methane volatile organic compounds for the period 1990 to 2014.

Diagram 1.Trend in emissions of non-methane volatile organic compounds

Assessment


Under the CARDS Programme, Inventory of air emissions of the main pollutants in the country was established in 2005 in accordance with the EMEP methodology by individual sectors, i.e. activities, and in 2014 Inventory including all pollutants was prepared.

Sectors based on the above mentioned methodology and SNAP – selective nomenclature of air pollution are presented in the table below:

SNAP	Sector				
1	Combustion in energy and transformation industries				
2	Non-industrial combustion plants				
3	Combustion in manufacturing industry				
4	Production processes				
5	Extraction and distribution of fossil fuels and geothermal energy				
6	Solvent and other product use				
7	Road transport				
8	Other mobile sources and machinery				
9	Waste treatment				
10	Agriculture				
11	Nature				

The main sources of emissions in 2014 of NMVOCs were the SNAP categories of sources SNAP 2 - Non-industrial combustion plants (mostly household heating) and SNAP 6 - Solvent and other product use (mostly use of solvents) with shares of 31% and 19%, respectively in the total national emission of NMVOCs. Also, 19% of the overall emissions of NMVOCs originated from NFR category of sources SNAP 7 - Road transport. Emissions of NMVOCs from agriculture originating mainly from agricultural land, have share of 13% in the overall national emissions.

Diagram 2. Emissions of NMVOCs by SNAP sectors per year in 2014

Policy specific issue

Which different sectors and processes contribute to non-methane volatile organic compounds emissions?

The main sources of emissions in 2014 of NMVOCs were the NFR categories of sources 1A4 Other sectors (mostly household heating), 2 Industrial processes and product use (mostly use of solvents) and 1A3 Transport. In the period 2011 to 2013, annual emissions of NMVOCs by sectors were approximately the same, and reduced emission was recorded in 2014 due to reduced emissions of NMVOCs from sectors 2 Industrial processes and product use and 1A4 Other sectors (mostly household heating).

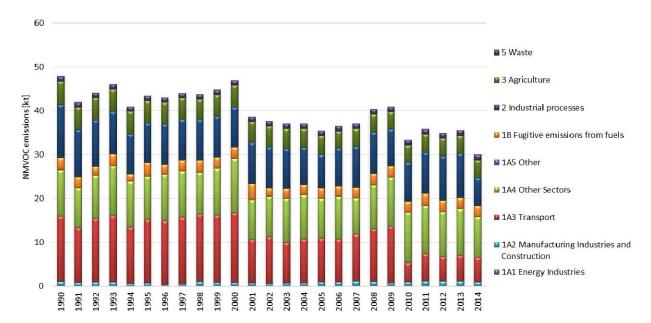


Diagram 3. Emissions of NMVOCs by NFR sectors per year

Data coverage: **exce**

Sources of data:

The data used refers to overall national emissions and emissions categorized by NFR delivered by EEA member and collaborating states to EEA and Secretariat of the United Nations. Data is accessible per country on the following web address: http://cdr.eionet.europa.eu/mk/un/UNECE_CLRTAP_MK.

Methodology

Methodology for indicator calculation

The methodology for this indicator calculation is based on calculated national emissions and emissions by NFR sectors of this pollutant as reported to EEA (European Environmental Agency) and UNECE/EMEP (United Nations Economic Commission for Europe/Cooperative programme for monitoring and evaluation for transboundary air pollution transfer under the Convention on Transboundary Air Pollution Transfer) in February 2016. Data used in this report is in accordance with the data submitted, the difference being that additional allocation of national emissions has been made apart from NFR (as sent to international organizations) also by SNAP.

Calculations are in line with the Guidebook of EMEP/EEA on air emissions inventory taking published in 2009 and 2013. The Guidebook contains emission factors which have been used in the calculations,

except for the energy sector where calculations were made by use of country specific factors or use of data from the measurements completed in the period 2008-2014 for this polluting substance for the sector 1A1a concerning electricity and heat producing plants.

Reference of used methodology

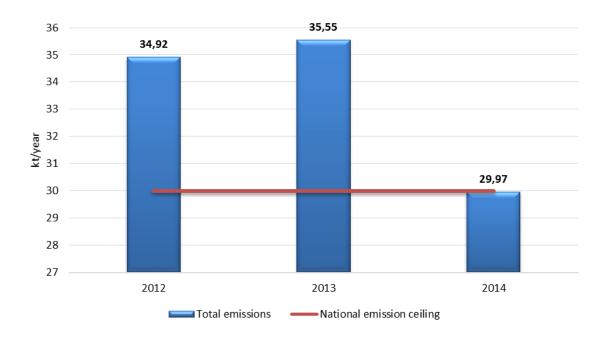
Methodology used for calculation and presentation of this indicator is given in EMEP/EEA Guidebook for inventory of air pollutant emissions of 2009 and Guidebook of 2013 which may be accessed at the following links (http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009 and http://www.eea.europa.eu/publications/emep-eea-guidebook-2013).

Policy relevance of the indicator

Action Plan for European Partnership, as well as National Plan for approximation of the national legislation with European regulations specifying bylaws that need to be prepared have been adopted.

The National Environmental Action Plan (NEAP II) was adopted. It contains the measures that need to be taken to improve the overall status of air quality, including the reduction of emissions of acidifying substances. The National Plan for Ambient Air Protection for the period 2012 to 2017 specifying the measures for air protection on national level and the National Programme for gradual air emissions reduction by 2020 have been adopted in order to define and implement measures on national level. At the same time, for the purpose of air quality improvement in certain local self-government units (LSGUs) with action plans, pilot program was prepared for the City of Bitola, serving as basis for preparation of local planning documents in other cities. Currently air quality plans and short term action plans for city of Skopje and city of Tetovo are under preparation in the Twining project "Further strengthening the capacities for effective implementation of the acquis in the field of air quality", which should be finalized at the end of 2016.

Targets


Does any of the national documents set target or target should be achieved in accordance with other international documents?

National strategic documents listed as references in the above text provide guidelines and specify actions that should be undertaken as a matter of priority. It is important to mention that bylaws have been prepared in the area of air emissions transposing Directives 96/61/EC, 2000/81/EC, 2000/76/EC, 99/13/EC and 2001/81/EC, ranging between 90 and 100%.

In accordance with the requirements of the UNECE Convention on Long-Range Transboundary Air Pollution, inventory based on EMEP/EEA Guidebook for inventory of polluting substances into the air, setting the target of regular inventory of pollutants in tons per year following the n-2 principle, where n is the current year.

Also, in accordance with Directive 2001/81/EC, as well as Gothenburg Protocol, the ceilings of the amounts of emissions have been set at the level of the Republic of Macedonia for 2010 that shall not be exceeded at the annual level of 2010. The Executive Body of the Convention on Long-Range Transboundary Air Pollution, upon submission of the values of national ceilings in order to enrol the Republic of Macedonia in Annex II of the Gothenburg Protocol requested correction of the values considering the reported data on air emissions of the pollutants sulfur dioxide and ammonia at national level. Changes in the values of these pollutants were incorporated in the Rulebook amending the Rulebook on upper limits – emission ceilings of pollutants for the purpose of setting projections for certain period concerning reduction of the quantities of pollutant emissions at annual level published in July 2014. The national upper limit-ceiling for NMVOCs was exceeded in 2013 and 2014.

Diagram 4. Comparison of the national emissions of NMVOCs in the period 2012-2014 with the upper limit-ceiling for 2010

Older date protocol on non-methane volatile organic compounds also sets targets for this polluting substance, namely: Protocol to 1979 UNECE Convention on Long-Range Transboundary Air Pollution, concerning control of emissions of non-methane volatile organic compounds or their transboundary transfer, under which the national emissions of non-methane volatile organic compounds should be reduced by 30% relative to 1988 (this target was not achieved in 2014) which means that the country is compliant with this Protocol.

With reference to the targets-projections of NMVOCs for 2020 set in the Programme for gradual reduction of emissions of certain polluting substances at the level of the Republic of Macedonia, with reduction projections from 2010 to 2020, we should point out that those do not take into account recalculations for the emissions made for this polluting substance in the follow-up years and therefore review of projections for 2020 has been envisaged and those have not been taken into account in this report.

Legal basis

The Law on Ambient Air Quality adopted in August 2004 and amended several times afterwards (Official Gazette of RM no. 67/2004, 92/2007, 83/2009, 35/10, 47/11, 100/12, 163/2013) is framework law in the area of air. The goals of this Law include avoiding, prevention and reduction of harmful effects on human health and environment as a whole, prevention and abatement of pollutions leading to climate change, as well as provision of appropriate information on the quality of ambient air.

On the basis of the Law on Ambient Air Quality, 16 bylaws were prepared and adopted to introduce limit values for air quality and air emissions, methodology of air quality and air emissions monitoring, manner of preparation of planning documents for air protection against pollution, manner of informing the citizens and international organizations, etc.

In 2010, all 8 Protocols to the Convention on Long-Range Transboundary Air Pollution – CLRTAP were ratified. Owing to the requirement for amendment of the annexes with regard to emissions in the baseline year (1990) and national emission ceilings for 2010, the Gothenburg Protocol and 1995 Protocol on sulphur entered into force for the Republic of Macedonia in 2014 upon adoption of the values set in Annex II of these Protocols. In relation to the obligations for calculation of emissions of non-methane

volatile organic compounds (NMVOCs), the following protocols or international ratified agreements are of relevance:

Protocol to 1979 Convention on Long-Range Transboundary Air Pollution concerning concerning control of emissions of non-methane volatile organic compounds or their transboundary transfer. The Protocol was ratified by the Law on Ratification (Official Gazette of RM no. 24/2010);

Protocol to 1979 Convention on Long-Range Transboundary Air Pollution concerning reduction of acidification, eutrophication and ground ozone (Gothenburg, 1999). The Protocol was ratified by the Law on Ratification (Official Gazette of RM no. 135/2010).

Reporting obligation

- Reporting obligations are set on annual level towards international agreements UNECE-CLRTAP and EEA
- Annual Report of Processed Data on Air Emissions

General metadata

Code	Title of the indicator	Compliance with CSI EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 050	Emissions of the main polluting substances – non-methane volatile organic	EEA	CSI 040, APE 010	Р	А	airquality of	annually
	compounds (NMVOCs)	UNECE	A1/3			air	

MK - NI 050

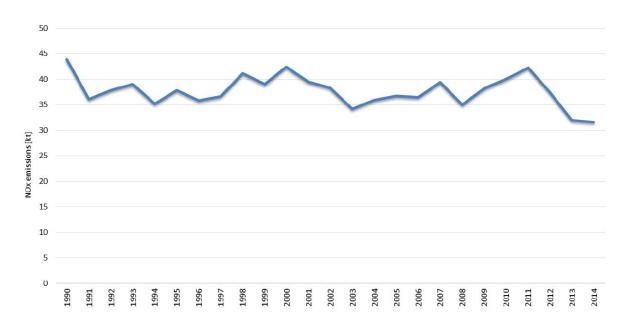
EMMISSION OF THE MAIN POLLUTING SUBSTANCES - EMISSION OF NITROGEN OXIDES EXPRESSED AS NITROGEN DIOXIDE

Definition

The indicator tracks the trends in nitrogen oxides expressed as nitrogen dioxide.

Units

kt (kilotons per year)


Key policy issue

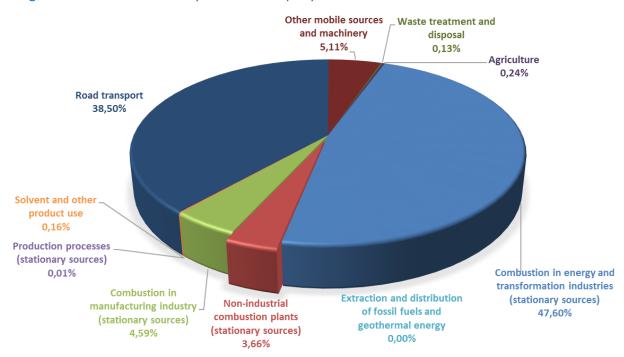
What progress has been made in overall reduction of emissions of nitrogen oxides expressed as nitrogen dioxide in the Republic of Macedonia?

In 1990, the overall national emissions of NOx amounted to 44 kt. Since then, emissions dropped by 28% to reach the level of around 32kt in 2014. The reasons for the dropping trend are related mainly to the reduced emissions from energy production industry (Public energy and heating plants) and production industry (mainly mobile combustion plants). Increase of emissions in 2006 and 2007 was caused by increased consumption of crude oil in the sector 1A1a, while sharp drop of emissions between 2011 and 2012 resulted from reduced consumption of coal in large thermal power plants. In the period 2012-2013, reduction in the emission was due to the reduced time of operation of the second in size power plant REK Oslomej, from 12 to 5 months and reduced consumption of coal by as much as 60%. Lower emissions of NOx in 2013 compared to 2012 were also result of the boilers modernization in the biggest thermal power plant REK Bitola. During 2013 and 2014, emissions were relatively stable (-1%).

The Diagram below shows annual trend in the emissions of nitrogen oxides expressed as nitrogen dioxide for the period 1990 to 2014.

Diagram 1. Trend in emissions of nitrogen oxides expressed as nitrogen dioxide

Assessment


Under the CARDS Programme, Inventory of air emissions of the main pollutants in the country was established in 2005 in accordance with the EMEP methodology by individual sectors, i.e. activities, and in 2014 Inventory including all pollutants was prepared.

Sectors based on the above mentioned methodology and SNAP – selective nomenclature of air pollution are presented in the table below:

SNAP	Sector				
1	Combustion in energy and transformation industries				
2	Non-industrial combustion plants				
3	Combustion in manufacturing industry				
4	Production processes				
5	Extraction and distribution of fossil fuels and geothermal energy				
6	Solvent and other product use				
7	Road transport				
8	Other mobile sources and machinery				
9	Waste treatment				
10	Agriculture				
11	Nature				

The main sources of emissions in 2014 included the following SNAP categories of sources: Road transport (SNAP 7), with a share of 38% (22% in 1990) and Combustion in energy and transformation industries (SNAP 1) with a share of 48% (55% in 1990) in the total national emission of NOx. Significant reduction in the share in the total national emission of NOx was observed in SNAP 3 - Combustion in manufacturing industry amounting only 5% (19% in 1990).

Diagram 2. Emissions of NOx by SNAP sectors per year in 2014

Policy specific issue

Which different sectors and processes contribute to nitrogen oxides emissions?

Sector 1A1a is the key sector for nitrogen oxides emissions. In 2013 and 2014, almost equal emissions of nitrogen oxides were recorded, which were lower compared to 2011 and 2012 due to reduced capacity of REK Oslomej. Lower emissions of NOx in 2013 and 2014 compared to 2012 were also result of the boilers modernization in the biggest thermal power plant REK Bitola. During 2013 and 2014, emissions were relatively stable (-1%). NFR sectors: 1C-Fugitive emissions, 2-Industrial processes and product use, 3-Agriculture and 5-Waste are small sources of NOx emissions. The overall emission of NOx from subsectors 1A3-Transport and 2 Industrial processes, as well as sectors 5-Waste and fugitive emissions, was approximately the same between 1990 and 2014, though increased emission of NOx was observed in 2013 and 2014 from subsector 1A3-Transport.

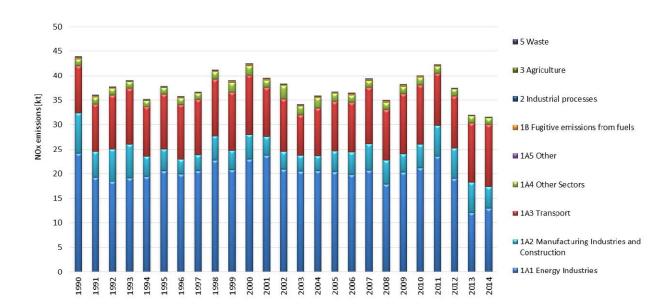


Diagram 3. Emissions of NOx by NFR sectors per year

Data coverage: **excel**

Sources of data:

The data used refers to overall national emissions and emissions categorized by NFR delivered by EEA member and collaborating states to EEA and Secretariat of the United Nations. Data is accessible per country on the following web address: http://cdr.eionet.europa.eu/mk/un/UNECE_CLRTAP_MK.

Methodology

Methodology for indicator calculation

The methodology for this indicator calculation is based on calculated national emissions and emissions by NFR sectors of this pollutant as reported to EEA (European Environmental Agency) and UNECE/EMEP (United Nations Economic Commission for Europe/Cooperative programme for monitoring and evaluation for transboundary air pollution transfer under the Convention on Transboundary Air Pollution Transfer) in February 2016. Data used in this report is in accordance with the data submitted, the difference being that additional allocation of national emissions has been made apart from NFR (as sent to international organizations) also by SNAP.

Calculations are in line with the Guidebook of EMEP/EEA on air emissions inventory taking published in 2009 and 2013. The Guidebook contains emission factors which have been used in the calculations, except for the energy sector where calculations were made by use of country specific factors or use of data from the measurements completed in the period 2008-2014 for this polluting substance for the sector 1A1a concerning electricity and heat producing plants.

Reference of used methodology

Methodology used for calculation and presentation of this indicator is given in EMEP/EEA Guidebook for inventory of air pollutant emissions of 2009 and Guidebook of 2013 which may be accessed at the following links (http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009 and http://www.eea.europa.eu/publications/emep-eea-guidebook-2013).

Policy relevance of the indicator

Action Plan for European Partnership, as well as National Plan for approximation of the national legislation with European regulations specifying bylaws that need to be prepared have been adopted.

The National Environmental Action Plan (NEAP II) was adopted. It contains the measures that need to be taken to improve the overall status of air quality, including the reduction of emissions of acidifying substances. The National Plan for Ambient Air Protection for the period 2012 to 2017 specifying the measures for air protection on national level and the National Programme for gradual air emissions reduction from 2012 to 2020 have been adopted in order to define and implement measures on national level concerning reduction of nitrogen oxides emissions and achievement of projected values for the total emission of this polluting substance on national level. At the same time, for the purpose of air quality improvement in certain local self-government units (LSGUs) with action plans, pilot program was prepared for the City of Bitola, serving as basis for preparation of local planning documents in other cities. Currently air quality plans and short term action plans for city of Skopje and city of Tetovo are under preparation in the Twining project "Further strengthening the capacities for effective implementation of the acquis in the field of air quality", which should be finalized at the end of 2016.

Targets

Does any of the national documents set target or target should be achieved in accordance with other international documents?

National strategic documents listed as references in the above text provide guidelines and specify actions that should be undertaken as a matter of priority. It is important to mention that bylaws have been prepared in the area of air emissions transposing Directives 96/61/EC, 2000/81/EC, 2000/76/EC, 99/13/EC and 2001/81/EC, ranging between 90 and 100%.

In accordance with the requirements of the UNECE Convention on Long-Range Transboundary Air Pollution, inventory based on EMEP/EEA Guidebook for inventory of polluting substances into the air, setting the target of regular inventory of pollutants in tons per year following the n-2 principle, where n is the current year.

Also, in accordance with Directive 2001/81/EC, as well as Gothenburg Protocol, the ceilings of the amounts of emissions have been set at the level of the Republic of Macedonia for 2010 that shall not be exceeded at the annual level of 2010. The Executive Body of the Convention on Long-Range Transboundary Air Pollution, upon submission of the values of national ceilings in order to enrol the Republic of Macedonia in Annex II of the Gothenburg Protocol requested correction of the values considering the reported data on air emissions of the pollutants sulfur dioxide and ammonia at national level. Changes in the values of these pollutants were incorporated in the Rulebook amending the Rulebook on upper limits — emission ceilings of pollutants for the purpose of setting projections for certain period concerning reduction of the quantities of pollutant emissions at annual level published in July 2014. This Rulebook also sets the national upper limit — ceiling for the emissions of nitrogen oxides expressed as nitrogen dioxide of 39 kilotons. The national upper limit-ceiling for NOx has not been

exceeded for the last three years.

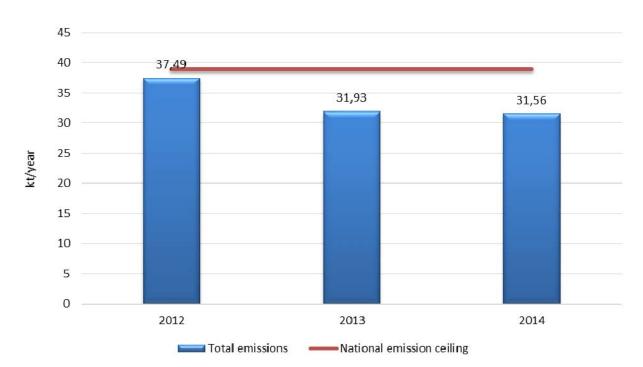


Diagram 4. Comparison of the emissions of NOx in the period 2012-2014 with the upper limit-ceiling for 2010

According to the results presented in Diagram 4, it may be concluded that the Republic of Macedonia is in compliance with the Gothenburg Protocol for this polluting substance. For this polluting substances, targets are also set in the Protocol to 1979 Convention on Long-Range Transboundary Air Pollution concerning control of nitrogen oxides releases or their transboundary transfers, under which the emissions in n-2 year (where n is the current year) should not exceed the emissions in the baseline year (being 1987 for our country) and the country is compliant with this Protocol in relation to emissions calculated for 2014.

With reference to the targets – projections for NOx for 2015 (33.7 kilotons) scenario with measures set in the Programme for gradual reduction of emissions of certain polluting substances at the level of the Republic of Macedonia with projections for the reductions in the period between 2012 and 2020, were achieved in 2014.

Legal basis

The Law on Ambient Air Quality adopted in August 2004 and amended several times afterwards (Official Gazette of RM no. 67/2004, 92/2007, 83/2009, 35/10, 47/11, 100/12, 163/2013) is framework law in the area of air. The goals of this Law include avoiding, prevention and reduction of harmful effects on human health and environment as a whole, prevention and abatement of pollutions leading to climate change, as well as provision of appropriate information on the quality of ambient air.

On the basis of the Law on Ambient Air Quality, 16 bylaws were prepared and adopted to introduce limit values for air quality and air emissions, methodology of air quality and air emissions monitoring, manner

of preparation of planning documents for air protection against pollution, manner of informing the citizens and international organizations, etc.

In 2010, all 8 Protocols to the Convention on Long-Range Transboundary Air Pollution — CLRTAP were ratified. Owing to the requirement for amendment of the annexes with regard to emissions in the baseline year (1990) and national emission ceilings for 2010, the Gothenburg Protocol and 1995 Protocol on sulphur entered into force for the Republic of Macedonia in 2014 upon adoption of the values set in Annex II of these Protocols. In relation to the obligations for calculation of emissions of nitrogen oxides, the following protocols or international ratified agreements are of relevance:

- Protocol to 1979 Convention on Long-Range Transboundary Air Pollution concerning control of nitrogen oxides releases or their transboundary transfers. The Protocol was ratified by the Law on Ratification (Official Gazette of RM no. 24/2010);
- Protocol to 1979 Convention on Long-Range Transboundary Air Pollution concerning reduction of acidification, eutrophication and ground ozone (Gothenburg, 1999). The Protocol was ratified by the Law on Ratification (Official Gazette of RM no. 135/2010).

Reporting obligation

- Reporting obligations towards international agreements UNECE-CLRTAP and EEA
- Annual Report of Processed Data on Air Emissions

General metadata

Code	Title of the indicator	Compliance with CSI EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 050	Emissions of the main polluting substances – nitrogen oxides (NOx)	EEA UNECE	CSI 040, APE 010 A1/2	P	В	airquality ofair	annually

MK - NI 050

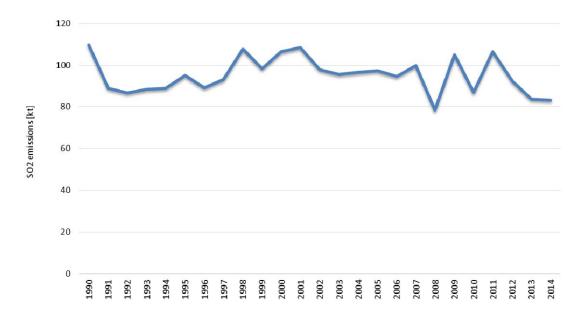
EMMISSION OF THE MAIN POLLUTING SUBSTANCES - EMISSION OF SULPHUR OXIDES

Definition

The indicator tracks the trends in sulphur oxides expressed as sulphur dioxide.

Units

kt (kilotons per year)


Key policy issue

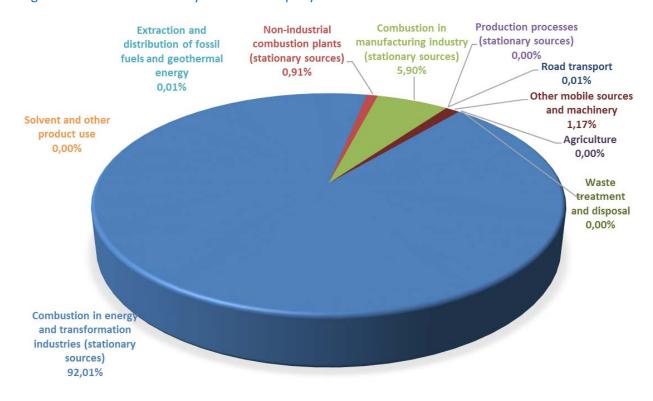
What progress has been made in overall reduction of emissions of sulphur oxides expressed as sulphur dioxide in the Republic of Macedonia?

In 1990, the overall national emissions of SO_2 amounted to 110 kt. In 2014, emissions dropped by 24% compared to 1990 and amounted to 83 kt. The reasons for the dropping trend of this polluting substance are related mainly to the reduced emissions of sulphur oxides from public energy and heating plants. The peaks (highest values) of emissions in 2009 and 2011 were caused by increased consumption of coal in the biggest thermal power plant REK Bitola, compared to 2010 when the consumption was lower. In the period 2012-2013, reduction in the emission was due to the reduced time of operation of the second in size power plant REK Oslomej, from 12 to 5 months and reduced consumption of coal by as much as 60%. Lower emissions of SO_2 in 2013 compared to 2012 were also result of the boilers modernization in the biggest thermal power plant REK Bitola. During 2013 and 2014, emissions were relatively stable (-1%). From 2013 to 2014, emissions remained at the same level for the fact that energy sector did not undergo any major modifications.

The Diagram below shows annual trend in the emissions of sulphur oxides expressed as sulphur dioxide for the period 1990 to 2014.

Diagram 1.Trend in emissions of sulphur oxides expressed as sulphur dioxide

Assessment


Under the CARDS Programme, Inventory of air emissions of the main pollutants in the country was established in 2005 in accordance with the EMEP methodology by individual sectors, i.e. activities, and in 2014 Inventory including all pollutants was prepared.

Sectors based on the above mentioned methodology and SNAP – selective nomenclature of air pollution are presented in the table below:

SNAP	Sector				
1	Combustion in energy and transformation industries				
2	Non-industrial combustion plants				
3	Combustion in manufacturing industry				
4	Production processes				
5	Extraction and distribution of fossil fuels and geothermal energy				
6	Solvent and other product use				
7	Road transport				
8	Other mobile sources and machinery				
9	Waste treatment				
10	Agriculture				
11	Nature				

Almost all emissions of SO_2 originate from SNAP sector 1 - Combustion in energy and transformation industries. Thus, the main sources of emissions in 2014 included the following NFR categories of sources: 1A1 Energy industries (Public energy and heating plants), with a share of 92% in the total national emission of SO_2 . Around 6% of the total national emission of SO_2 originated from SNAP sector 3 - Combustion in manufacturing industry. SNAP sectors 5 and 9 were minor sources of SO_2 emissions.

Diagram 2. Emissions of SOx by SNAP sectors per year in 2014

Policy specific issue

Which different sectors and processes contribute to sulphur oxides emissions?

Sector 1A1 Energy industries (Public energy and heating plants) is the key sector for sulphur oxides emissions. In 2013 and 2014, almost equal emissions of sulphur oxides were recorded, which were lower compared to 2011 and 2012 due to reduced capacity of REK Oslomej. In general, it may be concluded that the same trend of proportional share of the sectors contributing to sulphur oxides emission was observed.

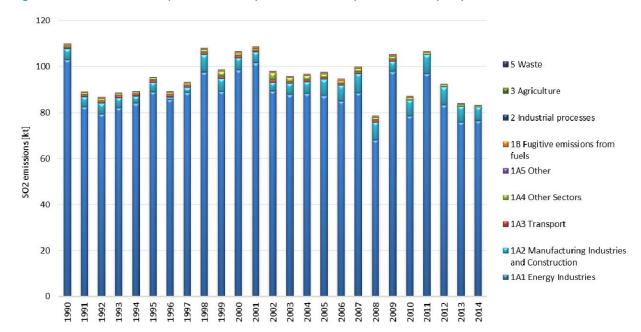


Diagram 3. Emissions of sulphur oxides expressed as SO₂ by NFR sectors per year

Data coverage: **excel**

Sources of data:

The data used refers to overall national emissions and emissions categorized by NFR delivered by EEA member and collaborating states to EEA and Secretariat of the United Nations. Data is accessible per country on the following web address: http://cdr.eionet.europa.eu/mk/un/UNECE CLRTAP MK.

Methodology

Methodology for indicator calculation

The methodology for this indicator calculation is based on calculated national emissions and emissions by NFR sectors of this pollutant as reported to EEA (European Environmental Agency) and UNECE/EMEP (United Nations Economic Commission for Europe/Cooperative programme for monitoring and evaluation for transboundary air pollution transfer under the Convention on Transboundary Air Pollution Transfer) in February 2016. Data used in this report is in accordance with the data submitted, the difference being that additional allocation of national emissions has been made apart from NFR (as sent to international organizations) also by SNAP.

Calculations are in line with the Guidebook of EMEP/EEA on air emissions inventory taking published in 2009 and 2013. The Guidebook contains emission factors which have been used in the calculations,

except for the energy sector where calculations were made by use of country specific factors or use of data from the measurements completed in the period 2008-2014 for this polluting substance and for the sector 1A1a concerning electricity and heat producing plants.

Reference of used methodology

Methodology used for calculation and presentation of this indicator is given in EMEP/EEA Guidebook for inventory of air pollutant emissions of 2009 and Guidebook of 2013 which may be accessed at the following links (http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009 and http://www.eea.europa.eu/publications/emep-eea-guidebook-2013).

Policy relevance of the indicator

Action Plan for European Partnership, as well as National Plan for approximation of the national legislation with European regulations specifying bylaws that need to be prepared have been adopted.

The National Environmental Action Plan (NEAP II) was adopted. It contains the measures that need to be taken to improve the overall status of air quality, including the reduction of emissions of acidifying substances. The National Plan for Ambient Air Protection for the period 2012 to 2017 specifying the measures for air protection on national level and the National Programme for gradual air emissions reduction from 2012 to 2020 have been adopted in order to define and implement measures on national level concerning reduction of sulphur oxides emissions and achievement of projected values for the total emission of this polluting substance on national level. At the same time, for the purpose of air quality improvement in certain local self-government units (LSGUs) with action plans, pilot program was prepared for the City of Bitola, serving as basis for preparation of local planning documents in other cities. Currently air quality plans and short term action plans for city of Skopje and city of Tetovo are under preparation in the Twining project "Further strengthening the capacities for effective implementation of the acquis in the field of air quality", which should be finalized at the end of 2016.

Targets

Does any of the national documents set target or target should be achieved in accordance with other international documents?

National strategic documents listed as references in the above text provide guidelines and specify actions that should be undertaken as a matter of priority. It is important to mention that bylaws have been prepared in the area of air emissions transposing Directives 96/61/EC, 2000/81/EC, 2000/76/EC, 99/13/EC and 2001/81/EC, ranging between 90 and 100%.

In accordance with the requirements of the UNECE Convention on Long-Range Transboundary Air Pollution, inventory based on EMEP/EEA Guidebook for inventory of polluting substances into the air, setting the target of regular inventory of pollutants in tons per year following the n-2 principle, where n is the current year.

Also, in accordance with Directive 2001/81/EC, as well as Gothenburg Protocol, the ceilings of the amounts of emissions have been set at the level of the Republic of Macedonia for 2010 that shall not be exceeded at the annual level of 2010. The Executive Body of the Convention on Long-Range Transboundary Air Pollution, upon submission of the values of national ceilings in order to enrol the Republic of Macedonia in Annex II of the Gothenburg Protocol requested correction of the values considering the reported data on air emissions of the pollutants sulfur dioxide and ammonia at national level. Changes in the values of these pollutants were incorporated in the Rulebook amending the Rulebook on upper limits – emission ceilings of pollutants for the purpose of setting projections for certain period concerning reduction of the quantities of pollutant emissions at annual level published in July 2014. This Rulebook also sets the national upper limit – ceiling for the emissions of sulphur oxides expressed as sulphur dioxide of 110 kilotons. The national upper limit-ceiling for SOx has not been exceeded for the last three years.

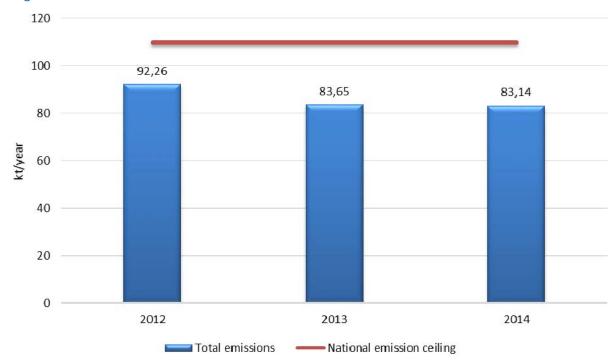


Diagram 4. Comparison of the national emissions of SO₂ in the period 2012-2014 with the upper limit-ceiling for 2010

According to the presented annual calculated emissions, the Republic of Macedonia is in compliance with the Gothenburg Protocol for this polluting substance. Older date protocols on sulfur also set targets for this polluting substance, namely: Protocol on reduction of sulphur oxides emission or their transboundary transfer by at least 30%, under which the national emissions of sulphur oxides expressed as sulphur dioxide should be reduced by 30% relative to 1980 (this target was not achieved in 2014) and Protocol regarding further reduction of sulphur oxides emission, under which emissions in n-2 year (where n is the current year) should not exceed the emissions of 1990 and the country is compliant with this Protocol.

With reference to sulphur oxides, based on the Decision of the Ministerial Council of the Energy Community (D / 2013/05 / MC-S-end), for the purpose of reducing the emissions of certain pollutants in the air from large combustion plants (LCP), National Emission Reduction Plan (NERP) has been prepared. The Plan was prepared in the frames of TAEIX mission and submitted for approval to the Energy Community in December 2015, upon prior approval by the Government of the Republic of Macedonia. The Plan sets the national upper limits-ceilings for sulphur dioxide from large combustion plants for 2018, 2023 and 2027.

Legal basis

The Law on Ambient Air Quality adopted in August 2004 and amended several times afterwards (Official Gazette of RM no. 67/2004, 92/2007, 83/2009, 35/10, 47/11, 100/12, 163/2013) is framework law in the area of air. The goals of this Law include avoiding, prevention and reduction of harmful effects on human health and environment as a whole, prevention and abatement of pollutions leading to climate change, as well as provision of appropriate information on the quality of ambient air.

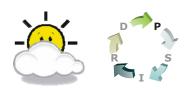
On the basis of the Law on Ambient Air Quality, 16 bylaws were prepared and adopted to introduce limit values for air quality and air emissions, methodology of air quality and air emissions monitoring, manner

of preparation of planning documents for air protection against pollution, manner of informing the citizens and international organizations, etc.

In 2010, all 8 Protocols to the Convention on Long-Range Transboundary Air Pollution – CLRTAP were ratified. Owing to the requirement for amendment of the annexes with regard to emissions in the baseline year (1990) and national emission ceilings for 2010, the Gothenburg Protocol and 1995 Protocol on sulphur entered into force for the Republic of Macedonia in 2014 upon adoption of the values set in Annex II of these Protocols. In relation to the obligations for calculation of emissions of sulphur and its oxides, the following protocols or international ratified agreements are of relevance:

Protocol to 1979 Convention on Long-Range Transboundary Air Pollution concerning further reduction in sulphur emissions. The Protocol was ratified by the Law on Ratification (Official Gazette of RM no. 24/2010);

Protocol to 1979 Convention on Long-Range Transboundary Air Pollution concerning reduction of sulphur oxides emission or their transboundary transfer by at least 30%. The Protocol was ratified by the Law on Ratification (Official Gazette of RM no. 24/2010);


Protocol to 1979 Convention on Long-Range Transboundary Air Pollution concerning reduction of acidification, eutrophication and ground ozone (Gothenburg, 1999). The Protocol was ratified by the Law on Ratification (Official Gazette of RM no. 135/2010).

Reporting obligation

- Reporting obligations are set on annual level towards international agreements UNECE-CLRTAP and EEA
- Annual Report of Processed Data on Air Emissions

Code	Title of the indicator	Compliance with CSI EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 050	Emissions of the main polluting substances – sulphur oxides (SOx)	EEA UNECE	CSI 040, APE 010 A1/1	P	В	airquality of air	annually

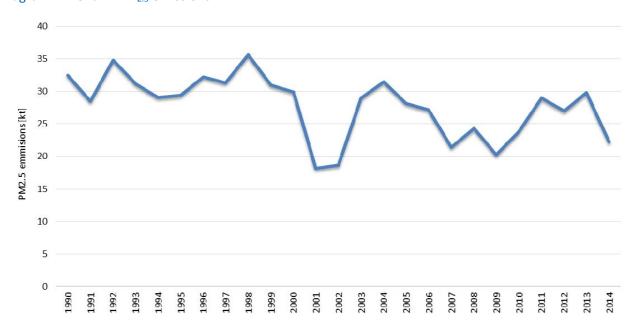
EMMISSION OF PARTICULATE MATTER – PARTICULATE MATTER (PM2.5) HAVING DIAMETER OF 2.5 MICROMETERS OR LESS

Definition

The indicator tracks the trends in emissions of particulate matter having diameter of 2.5 micrometers or less ($PM_{2.5}$).

Units

kt (kilotons per year)


Key policy issue

What progress has been made in overall reduction of emissions of particulate matters having diameter of 2.5 micrometers or less (PM_{2.5}) in the Republic of Macedonia?

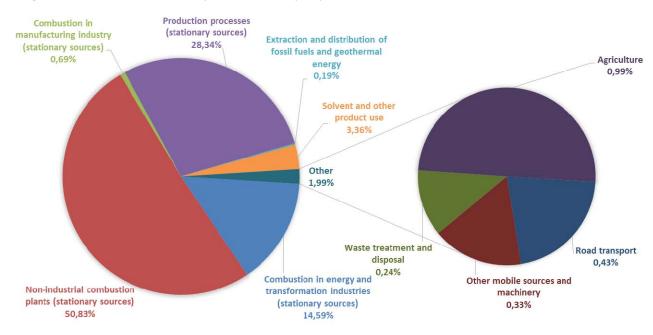
In 1990, the overall national emissions of $PM_{2.5}$ amounted to 32 kt. In 2014, emissions dropped by 32% to amount 22 kt. The main reason for the dropping was caused by reduced emissions from industrial processes (production of ferroalloys).

The Diagram below shows annual trend in PM_{2.5} emissions for the period 1990 to 2014.

Diagram 1.Trend in PM_{2.5} emissions

Assessment

Under the CARDS Programme, Inventory of air emissions of the main pollutants in the country was established in 2005 in accordance with the EMEP methodology by individual sectors, i.e. activities, and in 2014 Inventory including all pollutants was prepared.


Sectors based on the above mentioned methodology and SNAP – selective nomenclature of air pollution are presented in the table below:

SNAP	Sector					
1	Combustion in energy and transformation industries					
2	Non-industrial combustion plants					
3	Combustion in manufacturing industry					
4	Production processes					
5	Extraction and distribution of fossil fuels and geothermal energy					
6	Solvent and other product use					
7	Road transport					
8	Other mobile sources and machinery					
9	Waste treatment					
10	Agriculture					
11	Nature					

The main sources of emissions of particulate matters having diameter of 2.5 micrometers or less ($PM_{2.5}$) in 2014 were the SNAP sector 4, followed by SNAP sector 2 - Non-industrial combustion plants (mostly household heating) with a share of 51%, Production processes (mostly 2C2 Production of ferroalloys) with a share of 32% and SNAP 1 - Combustion in energy and transformation industries with ashare of 12%. SNAP sector 10-Agriculture also contributed to overall emissions of $PM_{2.5}$ with a share of 7% (6% in 1990).

NFR sectors 1B Fugitive emissions, 3 Agriculture and 5 Waste are insignificant sources of PM_{2.5} emissions.

Diagram 2. Emissions of PM_{2.5} by SNAP sectors per year in 2014

Policy specific issue

Which different sectors and processes contribute to PM_{2.5} emissions?

The main sources of PM_{2.5} emissions are the NFR sectors 1A4 Other sectors (heating in households), 2 Industrial processes and product use (mostly 2C2 Production of ferroalloys) and 1A1 Energy industries.

NFR sectors 1B Fugitive emissions and 5 Waste are insignificant sources of PM_{2.5} emission.

Emissions of PM_{2.5} in 2001, 2002 and 2009 were very low compared to other years. The reasons for this are that emissions originating from ferroalloys production were very low owing to the fact that the during these years the ferrosilicon producing company operated with limited capacity and produced quantities of ferrosilicon were by 80-90% lower compared to production in 2014.

From 2013 to 2014, emissions dropped again by 25% due to reduced emissions from ferroalloys production, as well as reduced emissions from household heating.

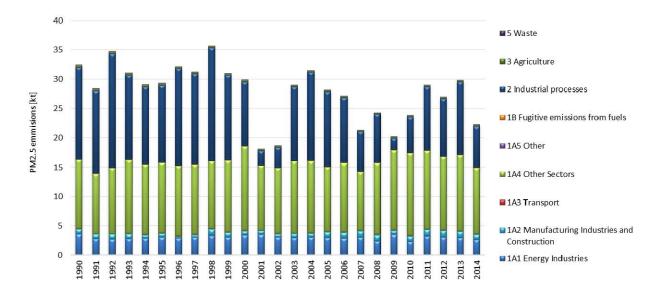


Diagram 3. Emissions of PM_{2.5} by NFR sectors per year

Data coverage: **excel**

Sources of data:

The data used refers to overall national emissions and emissions categorized by NFR delivered by EEA member and collaborating states to EEA and Secretariat of the United Nations. Data is accessible per country on the following web address: http://cdr.eionet.europa.eu/mk/un/UNECE_CLRTAP_MK.

Methodology

Methodology for indicator calculation

The methodology for this indicator calculation is based on calculated national emissions and emissions by NFR sectors of this pollutant as reported to EEA (European Environmental Agency) and UNECE/EMEP (United Nations Economic Commission for Europe/Cooperative programme for monitoring and evaluation for transboundary air pollution transfer under the Convention on Transboundary Air Pollution Transfer) in February 2016. Data used in this report is in accordance with the data submitted, the difference being that additional allocation of national emissions has been made apart from NFR (as sent to international organizations) also by SNAP.

Calculations are in line with the Guidebook of EMEP/EEA on air emissions inventory published in 2009 and 2013.

Reference of used methodology

Methodology used for calculation and presentation of this indicator is given in EMEP/EEA Guidebook for inventory of air pollutant emissions of 2009 and Guidebook of 2013 which may be accessed at the following links (http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009 and http://www.eea.europa.eu/publications/emep-eea-guidebook-2013).

Policy relevance of the indicator

Action Plan for European Partnership, as well as National Plan for approximation of the national legislation with European regulations specifying bylaws that need to be prepared have been adopted.

The National Environmental Action Plan (NEAP II) was adopted. It contains the measures that need to be taken to improve the overall status of air quality, including the reduction of emissions of acidifying substances. The National Plan for Ambient Air Protection for the period 2012 to 2017 specifying the measures for air protection on national level and the National Programme for gradual air emissions reduction by 2020 have been adopted in order to define and implement measures on national level.

At the same time, for the purpose of air quality improvement in certain local self-government units (LSGUs) with action plans, pilot program was prepared for the City of Bitola, serving as basis for preparation of local planning documents in other cities. Currently air quality plans and short term action plans for city of Skopje and city of Tetovo are under preparation in the Twining project "Further strengthening the capacities for effective implementation of the acquis in the field of air quality", which should be finalized at the end of 2016.

Targets

Does any of the national documents set target or target should be achieved in accordance with other international documents?

National strategic documents listed as references in the above text provide guidelines and specify actions that should be undertaken as a matter of priority. It is important to mention that bylaws have been prepared in the area of air emissions transposing Directives 96/61/EC, 2000/81/EC, 2000/76/EC, 99/13/EC and 2001/81/EC, ranging between 90 and 100%.

In accordance with the requirements of the UNECE Convention on Long-Range Transboundary Air Pollution, inventory based on EMEP/EEA Guidebook for inventory of polluting substances into the air, setting the target of regular inventory of pollutants in tons per year following the n-2 principle, where n is the current year.

This pollutant has not been included in the current National Programme for gradual reduction of emissions by 2020 and it is planned to include it in the forthcoming period in accordance with amendments of Directive 2001/81/EC and amendments of the Gothenburg Protocol.

Legal basis

The Law on Ambient Air Quality adopted in August 2004 and amended several times afterwards (Official Gazette of RM no. 67/2004, 92/2007, 83/2009, 35/10, 47/11, 100/12, 163/2013) is framework law in the area of air. The goals of this Law include avoiding, prevention and reduction of harmful effects on human health and environment as a whole, prevention and abatement of pollutions leading to climate change, as well as provision of appropriate information on the quality of ambient air.

On the basis of the Law on Ambient Air Quality, 16 bylaws were prepared and adopted to introduce limit values for air quality and air emissions, methodology of air quality and air emissions monitoring, manner of preparation of planning documents for air protection against pollution, manner of informing the citizens and international organizations, etc. For this polluting substance, the limit values and thresholds for assessment in accordance with the Framework Air Quality Directive 2008/50/EC are specified in the following bylaws: Decree on limit values of the levels and types of polluting substances in ambient air and

alert thresholds, deadlines for achievement of limit values, margines of tolerance for limit value, target values and long-term objectives and Rulebook on the criteria, methods and procedures for ambient air quality assessment.

Reporting obligation

- Reporting obligations are set on annual level towards international agreements UNECE-CLRTAP and EEA
- Annual Report of Processed Data on Air Emissions

Code	Title of the indicator	Compliance with CSI EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 061	Emissions of particulate matter having diameter of 2.5 micrometers or less (PM _{2.5})	EEA UNECE	CSI 040, APE 010 A1/14	P	A	airquality ofair	annually

EMMISSION OF PARTICULATE MATTER – PARTICULATE MATTER (PM10) HAVING DIAMETER OF 10 MICROMETERS OR LESS

Definition

The indicator tracks the trends in emissions of particulate matter having diameter of 10 μ m or less (PM10).

Units

kt (kilotons per year)

Key policy issue

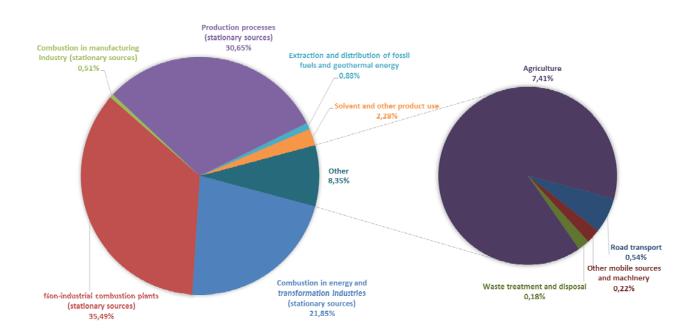
What progress has been made in overall reduction of emissions of particulate matter having diameter of 10 μ m or less (PM10) in the Republic of Macedonia?

In 1990, the overall national emissions of PM10 amounted to 48 kt. In 2014, emissions dropped by 32% to amount 33 kt. The main reason for the dropping was caused by reduced emissions from industrial processes (production of ferroalloys).

The Diagram below shows annual trend in PM10 emissions for the period 1990 to 2014.

Diagram 1.Trend in emissions of particulate matters having diameter of 10 μm or less (PM10)

Assessment


Under the CARDS Programme, Inventory of air emissions of the main pollutants in the country was established in 2005 in accordance with the EMEP methodology by individual sectors, i.e. activities, and in 2014 Inventory including all pollutants was prepared.

Sectors based on the above mentioned methodology and SNAP – selective nomenclature of air pollution are presented in the table below:

SNAP	Sector					
1	Combustion in energy and transformation industries					
2	Non-industrial combustion plants					
3	Combustion in manufacturing industry					
4	Production processes					
5	Extraction and distribution of fossil fuels and geothermal energy					
6	Solvent and other product use					
7	Road transport					
8	Other mobile sources and machinery					
9	Waste treatment					
10	Agriculture					
11	Nature					

The main sources of emissions of particulate matters having diameter of 10 μ m or less (PM10) in 2014 were the SNAP sectors 4 Production processes with 38%, then SNAP sector 2 - Non-industrial combustion plants (mostly household heating) with a share of 29%, Production processes (mostly 2C2 Production of ferroalloys) and SNAP 1 - Combustion in energy and transformation industries with ashare of 25%. Other sectors contribute 2% each to the overall emissions.

Diagram 2. Emissions of PM10 by SNAP sectors per year in 2014

Policy specific issue

Which different sectors and processes contribute to PM10 emissions?

The main sources of PM10 emissions are the NFR sectors 1A4 Other sectors (heating in households), 2 Industrial processes and product use (mostly 2C2 Production of ferroalloys) and 1A1 Energy industries. Also, sector Agriculture contributes PM10 to overall emissions.

NFR sectors 1B Fugitive emissions and 5 Waste are insignificant sources of PM10 emission.

Emissions in 2001, 2002 and 2009 were very low compared to other years. The reasons for this are that emissions originating from ferroalloys production were very low owing to the fact that the during these years the ferrosilicon producing company operated with limited capacity and produced quantities of ferrosilicon were by 80-90% lower compared to production in 2014.

From 2013 to 2014, emissions dropped again by 24% due to reduced emissions from ferroalloys production, as well as reduced emissions from household heating.

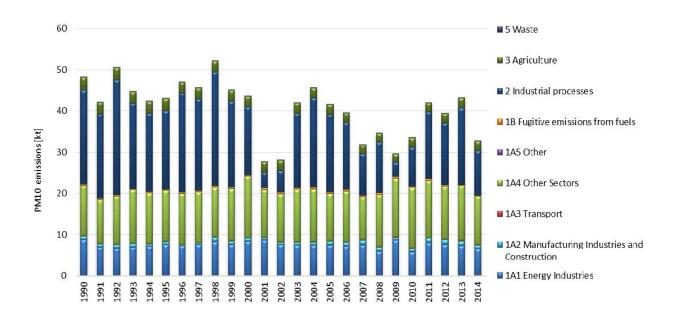


Diagram 3. Emissions of PM10 by NFR sectors per year

Data coverage: **excel**

Sources of data:

The data used refers to overall national emissions and emissions categorized by NFR delivered by EEA member and collaborating states to EEA and Secretariat of the United Nations. Data is accessible per country on the following web address: http://cdr.eionet.europa.eu/mk/un/UNECE_CLRTAP_MK.

Methodology

Methodology for indicator calculation

The methodology for this indicator calculation is based on calculated national emissions and emissions by NFR sectors of this pollutant as reported to EEA (European Environmental Agency) and UNECE/EMEP (United Nations Economic Commission for Europe/Cooperative programme for monitoring and evaluation for transboundary air pollution transfer under the Convention on Transboundary Air Pollution Transfer) in February 2016. Data used in this report is in accordance with the data submitted, the difference being that additional allocation of national emissions has been made apart from NFR (as sent to international

organizations) also by SNAP.

Calculations are in line with the Guidebook of EMEP/EEA on air emissions inventory taking published in 2009 and 2013.

Reference of used methodology

Methodology used for calculation and presentation of this indicator is given in EMEP/EEA Guidebook for inventory of air pollutant emissions of 2009 and Guidebook of 2013 which may be accessed at the following links (http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009 and http://www.eea.europa.eu/publications/emep-eea-guidebook-2013).

Policy relevance of the indicator

Action Plan for European Partnership, as well as National Plan for approximation of the national legislation with European regulations specifying bylaws that need to be prepared have been adopted.

The National Environmental Action Plan (NEAP II) was adopted. It contains the measures that need to be taken to improve the overall status of air quality, including the reduction of emissions of acidifying substances. The National Plan for Ambient Air Protection for the period 2012 to 2017 specifying the measures for air protection on national level and the National Programme for gradual air emissions reduction by 2020 have been adopted in order to define and implement measures on national level.

At the same time, for the purpose of air quality improvement in certain local self-government units (LSGUs) with action plans, pilot program was prepared for the City of Bitola, serving as basis for preparation of local planning documents in other cities. Currently air quality plans and short term action plans for city of Skopje and city of Tetovo are under preparation in the Twining project "Further strengthening the capacities for effective implementation of the acquis in the field of air quality", which should be finalized at the end of 2016.

Targets

Does any of the national documents set target or target should be achieved in accordance with other international documents?

National strategic documents listed as references in the above text provide guidelines and specify actions that should be undertaken as a matter of priority. It is important to mention that bylaws have been prepared in the area of air emissions transposing Directives 96/61/EC, 2000/81/EC, 2000/76/EC, 99/13/EC and 2001/81/EC, ranging between 90 and 100%.

In accordance with the requirements of the UNECE Convention on Long-Range Transboundary Air Pollution, inventory based on EMEP/EEA Guidebook for inventory of polluting substances into the air, setting the target of regular inventory of pollutants in tons per year following the n-2 principle, where n is the current year.

Legal basis

The Law on Ambient Air Quality adopted in August 2004 and amended several times afterwards (Official Gazette of RM no. 67/2004, 92/2007, 83/2009, 35/10, 47/11, 100/12, 163/2013) is framework law in the area of air. The goals of this Law include avoiding, prevention and reduction of harmful effects on human health and environment as a whole, prevention and abatement of pollutions leading to climate change, as well as provision of appropriate information on the quality of ambient air.

On the basis of the Law on Ambient Air Quality, 16 bylaws were prepared and adopted to introduce limit values for air quality and air emissions, methodology of air quality and air emissions monitoring, manner of preparation of planning documents for air protection against pollution, manner of informing the citizens and international organizations, etc. For this polluting substance, the limit values and thresholds

for assessment in accordance with the Framework Air Quality Directive 2008/50EC are specified in the following bylaws: Decree on limit values of the levels and types of polluting substances in ambient air and alert thresholds, deadlines for achievement of limit values, margines of tolerance for limit value,m target values and long-term objectives and Rulebook on the criteria, methods and procedures for ambient air quality assessment.

Reporting obligation

- Reporting obligations are set on annual level towards international agreements UNECE-CLRTAP and EEA
- Annual Report of Processed Data on Air Emissions

Code	Title of the indicator	Compliance with CSI EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 061	Emissions of particulate matter having diameter of 10 µm or less (PM10)	UNECE	A1/13	Р	Α	airquality of air	annually

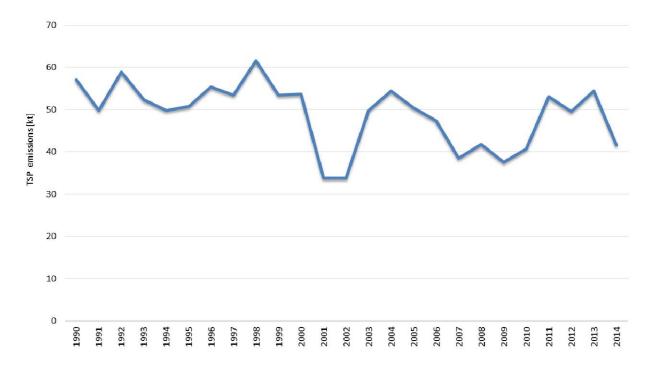
EMMISSION OF PARTICULATE MATTER – TOTAL SUSPENDED PARTICLES (TSP)

Definition

The indicator tracks the trends in total suspended particles (TSP).

Units

kt (kilotons per year)


Key policy issue

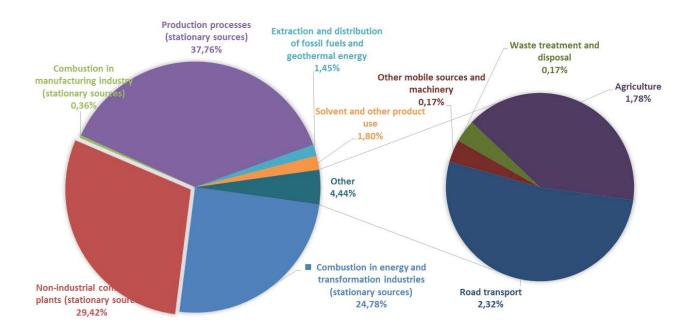
What progress has been made in overall reduction of emissions of total suspended particles in the Republic of Macedonia?

In 1990, the overall national emissions of TSP amounted to 57 kt. In 2014, emissions dropped by 28% to amount 41.6 kt. The main reason for the dropping was caused by reduced emissions from industrial processes (production of ferroalloys).

The Diagram below shows annual trend in the emissions of total suspended particles (TSP) for the period 1990 to 2014.

Diagram 1.Trend in emissions of total suspended particles (TSP)

Assessment


Under the CARDS Programme, Inventory of air emissions of the main pollutants in the country was established in 2005 in accordance with the EMEP methodology by individual sectors, i.e. activities, and in 2014 Inventory including all pollutants was prepared.

Sectors based on the above mentioned methodology and SNAP – selective nomenclature of air pollution are presented in the table below:

SNAP	Sector					
1	Combustion in energy and transformation industries					
2	Non-industrial combustion plants					
3	Combustion in manufacturing industry					
4	Production processes					
5	Extraction and distribution of fossil fuels and geothermal energy					
6	Solvent and other product use					
7	Road transport					
8	Other mobile sources and machinery					
9	Waste treatment					
10	Agriculture					
11	Nature					

The main sources of emissions of TSP in 2014 were the SNAP sectors 4 Production processes (mostly 2C2 Production of ferroalloys) with a share of 38%, then SNAP 2 sector - Non-industrial combustion plants (mostly household heating) with a share of 29% and SNAP 1 - Combustion in energy and transformation industries with ashare of 25%.

Diagram 2. Emissions of total suspended particles (TSP) by SNAP sectors per year in 2014

Policy specific issue

Which different sectors and processes contribute to TSP emissions?

The main sources of TSP emissions are the NFR sectors 2 Industrial processes and product use (mostly 2C2 Production of ferroalloys), 1A4 Other sectors (household heating) and 1A1 Energy industries.

NFR sectors 1B Fugitive emissions, 3 Agriculture and 5 Waste are insignificant sources of TSP emission.

Emissions in 2001, 2002 and 2009 were very low compared to other years. The reasons for this are that emissions originating from ferroalloys production were very low owing to the fact that the during these years the ferrosilicon producing company operated with limited capacity and produced quantities of ferrosilicon were by 80-90% lower compared to production in 2014.

From 2013 to 2014, emissions dropped again by 23% due to reduced emissions from ferroalloys production, as well as reduced emissions from household heating.

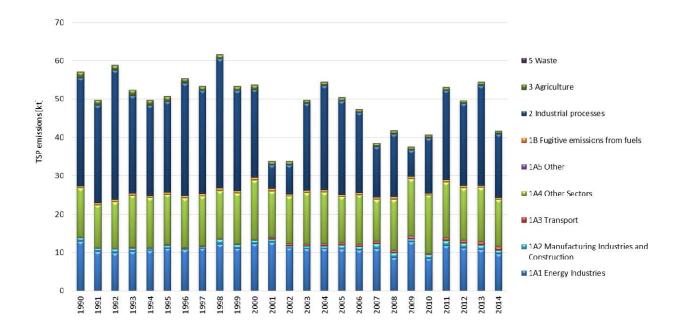


Diagram 3. Emissions of total suspended particles (TSP) by NFR sectors per year

Data coverage: **excel**

Sources of data:

The data used refers to overall national emissions and emissions categorized by NFR delivered by EEA member and collaborating states to EEA and Secretariat of the United Nations. Data is accessible per country on the following web address: http://cdr.eionet.europa.eu/mk/un/UNECE_CLRTAP_MK.

Methodology

Methodology for indicator calculation

The methodology for this indicator calculation is based on calculated national emissions and emissions by NFR sectors of this pollutant as reported to EEA (European Environmental Agency) and UNECE/EMEP (United Nations Economic Commission for Europe/Cooperative programme for monitoring and evaluation for transboundary air pollution transfer under the Convention on Transboundary Air Pollution Transfer) in February 2016. Data used in this report is in accordance with the data submitted, the difference being that additional allocation of national emissions has been made apart from NFR (as sent to international organizations) also by SNAP.

Calculations are in line with the Guidebook of EMEP/EEA on air emissions inventory taking published in 2009 and 2013. The Guidebook contains emission factors which have been used in the calculations, except for the energy sector where calculations were made by use of country specific factors or use of data from the measurements completed in the period 2008-2014 for this polluting substance for the

sector 1A1a concerning electricity and heat producing plants.

Reference of used methodology

Methodology used for calculation and presentation of this indicator is given in EMEP/EEA Guidebook for inventory of air pollutant emissions of 2009 and Guidebook of 2013 which may be accessed at the following links (http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009 and http://www.eea.europa.eu/publications/emep-eea-guidebook-2013).

Policy relevance of the indicator

Action Plan for European Partnership, as well as National Plan for approximation of the national legislation with European regulations specifying bylaws that need to be prepared have been adopted.

The National Environmental Action Plan (NEAP II) was adopted. It contains the measures that need to be taken to improve the overall status of air quality, including the reduction of emissions of acidifying substances. The National Plan for Ambient Air Protection for the period 2012 to 2017 specifying the measures for air protection on national level and the National Programme for gradual air emissions reduction by 2020 have been adopted in order to define and implement measures on national level.

At the same time, for the purpose of air quality improvement in certain local self-government units (LSGUs) with action plans, pilot program was prepared for the City of Bitola, serving as basis for preparation of local planning documents in other cities. Currently air quality plans and short term action plans for city of Skopje and city of Tetovo are under preparation in the Twining project "Further strengthening the capacities for effective implementation of the acquis in the field of air quality", which should be finalized at the end of 2016.

Targets

Does any of the national documents set target or target should be achieved in accordance with other international documents?

National strategic documents listed as references in the above text provide guidelines and specify actions that should be undertaken as a matter of priority. It is important to mention that bylaws have been prepared in the area of air emissions transposing Directives 96/61/EC, 2000/81/EC, 2000/76/EC, 99/13/EC and 2001/81/EC, ranging between 90 and 100%.

In accordance with the requirements of the UNECE Convention on Long-Range Transboundary Air Pollution, inventory based on EMEP/EEA Guidebook for inventory of polluting substances into the air, setting the target of regular inventory of pollutants in tons per year following the n-2 principle, where n is the current year. With regard to this polluting substance, air emission limit values are set in the bylaw compliant with the following Directives: 2001/80/EC, 1999/13/EC and 2000/76/EC.

Legal basis

The Law on Ambient Air Quality adopted in August 2004 and amended several times afterwards (Official Gazette of RM no. 67/2004, 92/2007, 83/2009, 35/10, 47/11, 100/12, 163/2013) is framework law in the area of air. The goals of this Law include avoiding, prevention and reduction of harmful effects on human health and environment as a whole, prevention and abatement of pollutions leading to climate change, as well as provision of appropriate information on the quality of ambient air.

On the basis of the Law on Ambient Air Quality, 16 bylaws were prepared and adopted to introduce limit values for air quality and air emissions, methodology of air quality and air emissions monitoring, manner of preparation of planning documents for air protection against pollution, manner of informing the citizens and international organizations, etc. The most relevant bylaw for this polluting substance is the

Rulebook on the limit values for permissible levels of emission and types of polluting substances in waste gases and steams released from stationary sources in the air, which sets the limit values of air emissions from different technological processes.

Reporting obligation

- Reporting obligations are set on annual level towards international agreements UNECE-CLRTAP and EEA
- Annual Report of Processed Data on Air Emissions

Code	Title of the indicator	Compliance with CSI EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 061	Emissions of particulate matter – total suspended particles (TSP)	UNECE	A1/12	Р	Α	airquality of air	annually

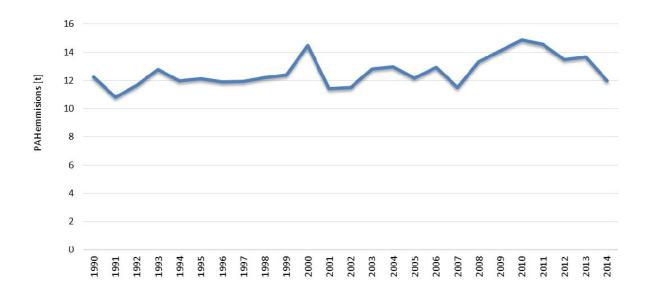
EMMISSION OF PERSISTENT ORGANIC POLLUTANTS - Polycyclic aromatic hydrocarbons (PAHs)

Definition

The indicator tracks the trends in Polycyclic aromatic hydrocarbons (PAHs).

Units

t (tons per year)


Key policy issue

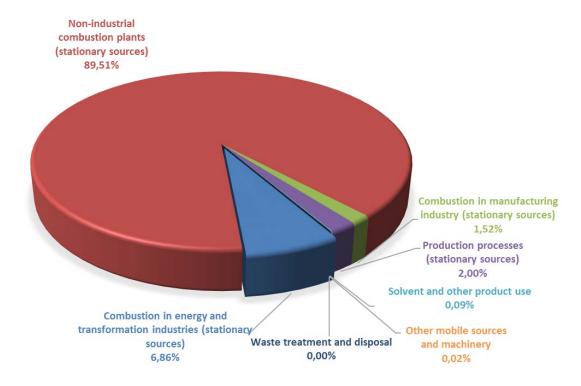
What progress has been made in overall reduction of emissions of polycyclic aromatic hydrocarbons (PAHs) in the Republic of Macedonia?

In 1990, the overall national emissions of PAHs amounted to 12 t. Since then, emissions have been relatively stable reaching nearly the 1990 level in 2014 or 12 t.

The Diagram below shows annual trend in PAHs emissions for the period 1990 to 2014.

Diagram 1.Trend in emissions of polycyclic aromatic hydrocarbons (PAHs)

Assessment


Under the CARDS Programme, Inventory of air emissions of the main pollutants in the country was established in 2005 in accordance with the EMEP methodology by individual sectors, i.e. activities, and in 2014 Inventory including all pollutants was prepared.

Sectors based on the above mentioned methodology and SNAP – selective nomenclature of air pollution are presented in the table below:

SNAP	Sector					
1	Combustion in energy and transformation industries					
2	Non-industrial combustion plants					
3	Combustion in manufacturing industry					
4	Production processes					
5	Extraction and distribution of fossil fuels and geothermal energy					
6	Solvent and other product use					
7	Road transport					
8	Other mobile sources and machinery					
9	Waste treatment					
10	Agriculture					
11	Nature					

The main source of PAHs emissions in 2014 was the SNAP sectors 2 - Non-industrial combustion plants with a share of 89%. Within the SNAP sector, the main source contributing to overall national emissions of PAHs in 2014 was the subsector 1A4bi related to household heating, with the highest emissions originating from wood. SNAP category 3 — Combustion in manufacturing industry contributes 7% to the overall national emission.

Diagram 2. Emissions of PAHs by SNAP sectors per year in 2014

Policy specific issue

Which different sectors and processes contribute to emissions of polycyclic aromatic hydrocarbons (PAHs)?

The main source of PAH emissions in the period 1990-2014 was the NFR sector 1 Energy. Within the NFR sector Energy, the main source contributing to overall national emissions of PAHs is NFR sector 1A4 – Other sectors with a share of 89% (92% in 1990). NFR category 1A2 Production industries contributed 8% (4% in 1990) to the overall national emissions.

NFR sectors 1B Fugitive emissions and 2 Industrial processes and product use are insignificant sources of PAHs.

The most significant reductions have been observed in the sector household heating. In the period from 2013 to 2014, overall emissions of PAHs dropped by 13% due to reduced emissions from household heating as a result of the warmer weather and lesser consumption of fuel wood.

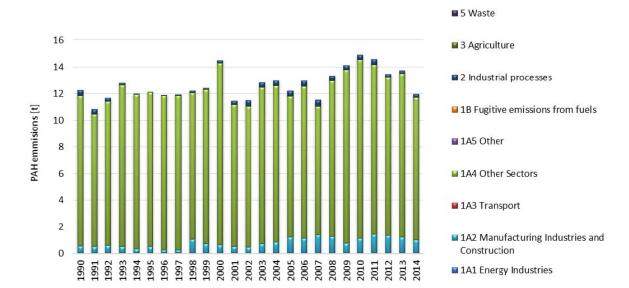


Diagram 3. Emissions of polycyclic aromatic hydrocarbons (PAHs) by NFR sectors per year

Data coverage: **exce**

Sources of data:

The data used refers to overall national emissions and emissions categorized by NFR delivered by EEA member and collaborating states to EEA and Secretariat of the United Nations. Data is accessible per country on the following web address: http://cdr.eionet.europa.eu/mk/un/UNECE CLRTAP MK.

Methodology

Methodology for indicator calculation

The methodology for this indicator calculation is based on calculated national emissions and emissions by NFR sectors of this pollutant as reported to EEA (European Environmental Agency) and UNECE/EMEP (United Nations Economic Commission for Europe/Cooperative programme for monitoring and evaluation for transboundary air pollution transfer under the Convention on Transboundary Air Pollution Transfer) in February 2016. Data used in this report is in accordance with the data submitted, the difference being that additional allocation of national emissions has been made apart from NFR (as sent to international organizations) also by SNAP.

Calculations are in line with the Guidebook of EMEP/EEA on air emissions inventory taking published in 2009 and 2013.

Reference of used methodology

Methodology used for calculation and presentation of this indicator is given in EMEP/EEA Guidebook for inventory of air pollutant emissions of 2009 and Guidebook of 2013 which may be accessed at the following links (http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009 and http://www.eea.europa.eu/publications/emep-eea-guidebook-2013).

Policy relevance of the indicator

Action Plan for European Partnership, as well as National Plan for approximation of the national legislation with European regulations specifying bylaws that need to be prepared have been adopted.

The National Environmental Action Plan (NEAP II) was adopted. It contains the measures that need to be taken to improve the overall status of air quality, including the reduction of emissions of acidifying substances. The National Plan for Ambient Air Protection for the period 2012 to 2017 specifying the measures for air protection on national level and the National Programme for gradual air emissions reduction by 2020 have been adopted in order to define and implement measures on national level.

Targets

Does any of the national documents set target or target should be achieved in accordance with other international documents?

National strategic documents listed as references in the above text provide guidelines and specify actions that should be undertaken as a matter of priority. It is important to mention that bylaws have been prepared in the area of air emissions transposing Directives 96/61/EC, 2000/81/EC, 2000/76/EC, 99/13/EC and 2001/81/EC, ranging between 90 and 100%.

In accordance with the requirements of the UNECE Convention on Long-Range Transboundary Air Pollution, inventory based on EMEP/EEA Guidebook for inventory of polluting substances into the air, setting the target of regular inventory of pollutants in tons per year following the n-2 principle, where n is the current year. For this polluting substance, limit values of air emissions are set in the bylaw which is compliant with the following directives: 2001/80/EC, 1999/13/EC and 2000/76/EC.

Also, targets – basic obligations for this polluting substance are also set in the Protocol to the 1979 UNECE Convention on Long-Range Transboundary Air Pollution concerning persistent organic pollutants, ratified in our country in 2010 (Official Gazette of RM no.135/2010).

Under the Protocol, national overall emissions of PAHs in n-2 year (where n is the current year) should not exceed the overall emission calculated for 1990 (taken as baseline year). The Republic of Macedonia is in compliance with this Protocol considering the emissions presented here for 2014. Compared to 1990, emissions of this pollutant have dropped by 2%.

The current National Programme for graduall reduction of emissions by 2020 does not include this polluting substance, but it has been planned to include it in the coming years in parallel with the amendments of Directive 2001/81/EC and amendments to the current Gothenburg Protocol.

Legal basis

The Law on Ambient Air Quality adopted in August 2004 and amended several times afterwards (Official Gazette of RM no. 67/2004, 92/2007, 83/2009, 35/10, 47/11, 100/12, 163/2013) is framework law in the area of air. The goals of this Law include avoiding, prevention and reduction of harmful effects on human health and environment as a whole, prevention and abatement of pollutions leading to climate change, as well as provision of appropriate information on the quality of ambient air.

On the basis of the Law on Ambient Air Quality, 16 bylaws were prepared and adopted to introduce limit values for air quality and air emissions, methodology of air quality and air emissions monitoring, manner of preparation of planning documents for air protection against pollution, manner of informing the citizens and international organizations, etc.

For this polluting substance, the most relevant bylaw is the Rulebook on the limit values for permissible levels of emission and types of polluting substances in waste gases and steams released from stationary sources in the air, which sets the limit values of air emissions from different technological processes.

In relation to the obligations for calculation of the emissions of polycyclic aromatic hydrocarbons (PAHs), the following convention and protocol as international ratified agreement are of relevance:

Stockholm Convention on Persistent Organic Pollutants ratified by the Law on Ratification (Official Gazette of RM no. 17/2004).

Protocol to the 1979 UNECE Convention on Long-Range Transboundary Air Pollution concerning persistent organic pollutants, ratified in our country in 2010 (Official Gazette of RM no.135/2010).

Reporting obligation

- Reporting obligations are set on annual level towards international agreements UNECE-CLRTAP and EEA
- Annual Report of Processed Data on Air Emissions

Code	Title of the indicator Compliance with CSI EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 062	Emissions of persistent organic pollutants –	EEA	APE 006	D	В	airquality of annually
IVIK INI UGZ	polycyclic aromatic hydrocarbons (PAHs)	UNECE	A1/9	Р		air

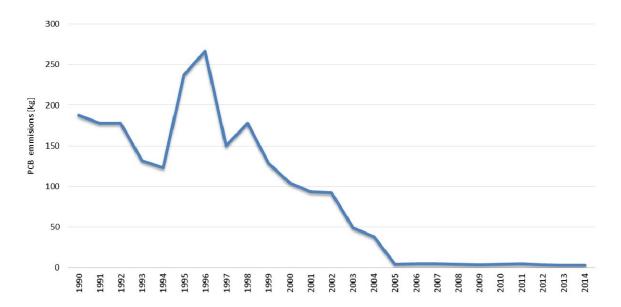
EMMISSION OF PERSISTENT ORGANIC POLLUTANTS – Polychlorinated biphenyls (PCBs)

Definition

The indicator tracks the trends in polychlorinated biphenyls (PCBs).

Units

kg (kilograms per year)


Key policy issue

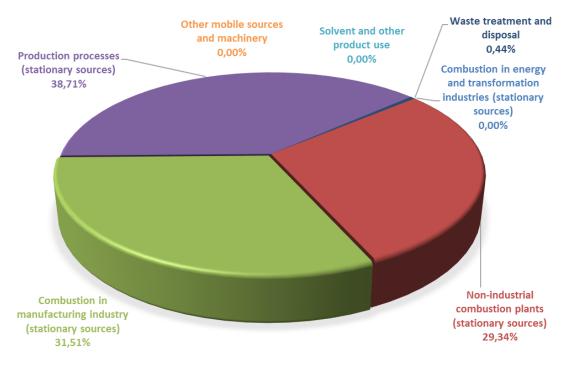
What progress has been made in overall reduction of emissions of polychlorinated biphenyls in the Republic of Macedonia?

In 1990, the overall national emissions of PCBs amounted to 187.5 kg. Since then, emissions have been reduced significantly to drop by 98% in 2014 or at a level of 3.2 kg.

The Diagram below shows annual trend in PCBs emissions for the period 1990 to 2014.

Diagram 1.Trend in emissions of polychlorinated biphenyls (PCBs)

Assessment


Under the CARDS Programme, Inventory of air emissions of the main pollutants in the country was established in 2005 in accordance with the EMEP methodology by individual sectors, i.e. activities, and in 2014 Inventory including all pollutants was prepared. Sectors based on the above mentioned methodology and SNAP – selective nomenclature of air pollution are presented in the table below:

SNAP	Sector				
1 Combustion in energy and transformation industries					
2 Non-industrial combustion plants					
3	Combustion in manufacturing industry				

4	Production processes
5	Extraction and distribution of fossil fuels and geothermal energy
6	Solvent and other product use
7	Road transport
8	Other mobile sources and machinery
9	Waste treatment
10	Agriculture
11	Nature

The main source of PCBs emissions in 2014 was the SNAP sectors 4 – Production processes with a share of 39%. This sector is followed by sectors 2 and 3 concerning combustion of fuel in non-industrial plants like households combustion in industrial plants (29.34% and 31.51%, respectively). NFR sector 5 – Waste is insignificant source of PCBs.

Diagram 2. Emissions of polychlorinated biphenyls PCBs by SNAP sectors per year in 2014

Policy specific issue

Which different sectors and processes contribute to emissions of polychlorinated biphenyls (PCBs)?

The main source of PCB emissions in the period 1990-2014 was the NFR sector 2 Industrial processes and product use. Within this sector, the highest contribution to overall national emissions of PCBs originated from NFR sector 2C5 Production of lead with a share of 30% in 2014 (99% in 1990). The main source was the smeltery in Veles which terminated its operation in 2003 contributing to significant reduction in overall national emissions of PCBs as of 2005 onwards. Other sources of emission in 2014 were NFR sectors 1A2 Manufacturing industries (Iron and steel production) and 1A4 Other sectors (mainly household heating).

NFR sector Waste was insignificant source of PCBs.

In the period from 2013 to 2014, overall emissions of PCBs remained rather stable (-0.5%).

300 ■ 5 Waste ■ 3 Agriculture 250 2 Industrial processes PCB emmisions [kg] 200 1B Fugitive emissions from fuels 150 ■ 1A4 Other Sectors 100 ■ 1A3 Transport 50 ■ 1A2 Manufacturing Industries and ■ 1A1 Energy Industries 1997 2005 2006

Diagram 3. Emissions of polychlorinated biphenyls (PCBs) by NFR sectors per year

Data coverage: **excel**

Sources of data:

The data used refers to overall national emissions and emissions categorized by NFR delivered by EEA member and collaborating states to EEA and Secretariat of the United Nations. Data is accessible per country on the following web address: http://cdr.eionet.europa.eu/mk/un/UNECE CLRTAP MK.

Methodology

Methodology for indicator calculation

The methodology for this indicator calculation is based on calculated national emissions and emissions by NFR sectors of this pollutant as reported to EEA (European Environmental Agency) and UNECE/EMEP (United Nations Economic Commission for Europe/Cooperative programme for monitoring and evaluation for transboundary air pollution transfer under the Convention on Transboundary Air Pollution Transfer) in February 2016. Data used in this report is in accordance with the data submitted, the difference being that additional allocation of national emissions has been made apart from NFR (as sent to international organizations) also by SNAP.

Calculations are in line with the Guidebook of EMEP/EEA on air emissions inventory taking published in 2009 and 2013.

Reference of used methodology

Methodology used for calculation and presentation of this indicator is given in EMEP/EEA Guidebook for inventory of air pollutant emissions of 2009 and Guidebook of 2013 which may be accessed at the following links (http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009 and http://www.eea.europa.eu/publications/emep-eea-guidebook-2013).

Policy relevance of the indicator

Action Plan for European Partnership, as well as National Plan for approximation of the national legislation with European regulations specifying bylaws that need to be prepared have been adopted.

The National Environmental Action Plan (NEAP II) was adopted. It contains the measures that need to be taken to improve the overall status of air quality, including the reduction of emissions of acidifying

substances. The National Plan for Ambient Air Protection for the period 2012 to 2017 specifying the measures for air protection on national level and the National Programme for gradual air emissions reduction by 2020 have been adopted in order to define and implement measures on national level.

Targets

Does any of the national documents set target or target should be achieved in accordance with other international documents?

National strategic documents listed as references in the above text provide guidelines and specify actions that should be undertaken as a matter of priority. It is important to mention that bylaws have been prepared in the area of air emissions transposing Directives 96/61/EC, 2000/81/EC, 2000/76/EC, 99/13/EC and 2001/81/EC, ranging between 90 and 100%.

In accordance with the requirements of the UNECE Convention on Long-Range Transboundary Air Pollution, inventory based on EMEP/EEA Guidebook for inventory of polluting substances into the air, setting the target of regular inventory of pollutants in tons per year following the n-2 principle, where n is the current year. For this polluting substance, limit values of air emissions are set in the bylaw which is compliant with the following directives: 2001/80/EC, 1999/13/EC and 2000/76/EC.

Also, targets – basic obligations for this polluting substance are also set in the Protocol to the 1979 UNECE Convention on Long-Range Transboundary Air Pollution concerning persistent organic pollutants, ratified in our country in 2010 (Official Gazette of RM no.135/2010).

Under the Protocol, national overall emissions of PCBs in n-2 year (where n is the current year) should not exceed the overall emission calculated for 1990 (taken as baseline year). The Republic of Macedonia is in compliance with this Protocol considering the emissions presented here for 2014. Compared to 1990, emissions of this pollutant have been reduced by 98%.

Legal basis

The Law on Ambient Air Quality adopted in August 2004 and amended several times afterwards (Official Gazette of RM no. 67/2004, 92/2007, 83/2009, 35/10, 47/11, 100/12, 163/2013) is framework law in the area of air. The goals of this Law include avoiding, prevention and reduction of harmful effects on human health and environment as a whole, prevention and abatement of pollutions leading to climate change, as well as provision of appropriate information on the quality of ambient air.

On the basis of the Law on Ambient Air Quality, 16 bylaws were prepared and adopted to introduce limit values for air quality and air emissions, methodology of air quality and air emissions monitoring, manner of preparation of planning documents for air protection against pollution, manner of informing the citizens and international organizations, etc.

In relation to the obligations for calculation of the emissions of polychlorinated biphenyls (PCBs), the following convention and protocol as international ratified agreements are of relevance:

Stockholm Convention on Persistent Organic Pollutants ratified by the Law on Ratification (Official Gazette of RM no. 17/2004).

Protocol to the 1979 UNECE Convention on Long-Range Transboundary Air Pollution concerning persistent organic pollutants, ratified in our country in 2010 (Official Gazette of RM no.135/2010).

Reporting obligation

- Reporting obligations are set on annual level towards international agreements UNECE-CLRTAP and EEA
- Annual Report of Processed Data on Air Emissions

Code	Title of the indicator	Compliance with CSI EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
	Emissions of persistent organic pollutants –	EEA	APE 006	D	В	■ air	quality of annually
WIK INI OOZ	polychlorinated biphenyls (PCBs)	UNECE	A1/9	Р		air	

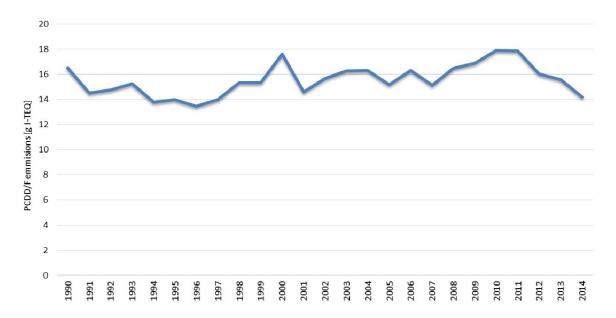
EMMISSION OF PERSISTENT ORGANIC POLLUTANTS – Dioxins and furans (PCDD/PCDF)

Definition

The indicator tracks the trends in dioxins and furans (Polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF)).

Units

g I-TEQ (grams per toxic equivalent)


Key policy issue

What progress has been made in overall reduction of emissions of dioxins and furans in the Republic of Macedonia?

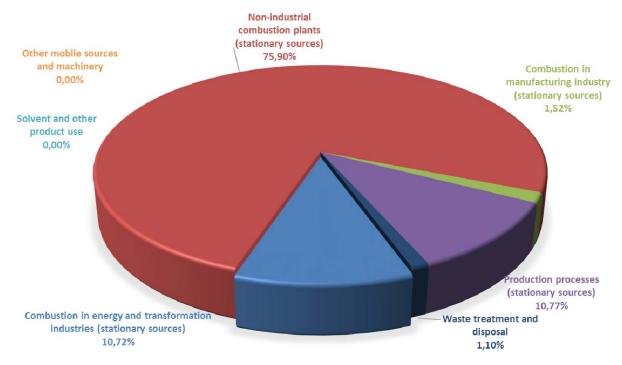
In 1990, the overall national emissions of PCDD/PCDF (dioxins/furans) amounted to 16 g I-TEQ. Since then, emissions have been reduced to drop at 14 g I-TEQ or by 14% compared with 1990.

The Diagram below shows annual trend in dioxins and furans (PCDD/PCDF) emissions for the period 1990 to 2014.

Diagram 1.Trend in emissions of dioxins and furans (PCDD/PCDF)

Assessment

Under the CARDS Programme, Inventory of air emissions of the main pollutants in the country was established in 2005 in accordance with the EMEP methodology by individual sectors, i.e. activities, and in 2014 Inventory including all pollutants was prepared. Sectors based on the above mentioned methodology and SNAP – selective nomenclature of air pollution are presented in the table below:


SNAP	Sector
1	Combustion in energy and transformation industries

2	Non-industrial combustion plants				
3	Combustion in manufacturing industry				
4	Production processes				
5	Extraction and distribution of fossil fuels and geothermal energy				
6	Solvent and other product use				
7	Road transport				
8	Other mobile sources and machinery				
9	Waste treatment				
10	Agriculture				
11	Nature				

The main source of PCDD/PCDF emissions in 2014 was the SNAP sectors 2 – Non-industrial combustion plants with a share of 76% (in the overall national emissions). Also, sectors 1 and 3 contribute equally to the overall national emissions of PCDD/PCDF with shares of 11% each.

NFR sectors 1B Fugitive emissions and 5 Waste are insignificant sources of PCDD/PCDF.

Diagram 2. Emissions of dioxins and furans (PCDD/PCDF) by SNAP sectors per year in 2014

Policy specific issue

Which different sectors and processes contribute to emissions of dioxins and furans (PCDD/PCDF)?

The main source of PCDD/PCDF emissions in the period 1990-2014 was the NFR sector 1 Energy. Within the sector Energy, the main sector contributing to overall national emissions of PCDD/PCDF is 1A4 Other sectors (mainly household heating), then NFR category 2 Manufacturing industries and product use (Production of metals).

NFR sectors 1B Fugitive emissions and 5 Waste were insignificant sources of PCDD/PCDF.

The most significant reduction of emissions of PCDD/PCDF occurred in NFR sector 2 Manufacturing industries and product use (Production of metals) especially in the segment of iron and steel production. This production was not constant because of the variations in steel prices and resulted in significant reduction in fugitive emissions. In the period from 2013 to 2014, the overall emissions of dioxins /furans were reduced by 9% mainly due to reduced emissions from household heating. Consumption of biomass

was reduced in 2014 compared to 2013 owing to warmer winter. Additionally, consumption of brickets and pellets increased.

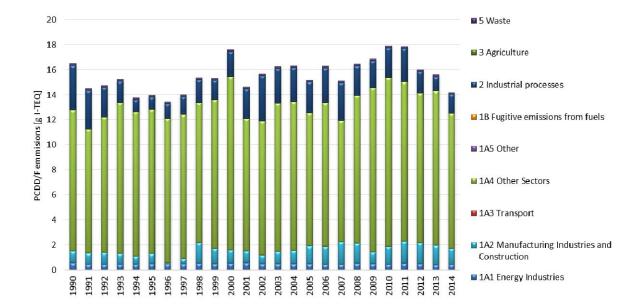


Diagram 3. Emissions of dioxins and furans (PCDD/PCDF) by NFR sectors per year

Data coverage: **excel**

Sources of data:

The data used refers to overall national emissions and emissions categorized by NFR delivered by EEA member and collaborating states to EEA and Secretariat of the United Nations. Data is accessible per country on the following web address: http://cdr.eionet.europa.eu/mk/un/UNECE_CLRTAP_MK.

Methodology

Methodology for indicator calculation

The methodology for this indicator calculation is based on calculated national emissions and emissions by NFR sectors of this pollutant as reported to EEA (European Environmental Agency) and UNECE/EMEP (United Nations Economic Commission for Europe/Cooperative programme for monitoring and evaluation for transboundary air pollution transfer under the Convention on Transboundary Air Pollution Transfer) in February 2016. Data used in this report is in accordance with the data submitted, the difference being that additional allocation of national emissions has been made apart from NFR (as sent to international organizations) also by SNAP.

Calculations are in line with the Guidebook of EMEP/EEA on air emissions inventory taking published in 2009 and 2013.

Reference of used methodology

Methodology used for calculation and presentation of this indicator is given in EMEP/EEA Guidebook for inventory of air pollutant emissions of 2009 and Guidebook of 2013 which may be accessed at the following links (http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009 and http://www.eea.europa.eu/publications/emep-eea-guidebook-2013).

Policy relevance of the indicator

Action Plan for European Partnership, as well as National Plan for approximation of the national legislation with European regulations specifying bylaws that need to be prepared have been adopted.

The National Environmental Action Plan (NEAP II) was adopted. It contains the measures that need to be taken to improve the overall status of air quality, including the reduction of emissions of acidifying substances. The National Plan for Ambient Air Protection for the period 2012 to 2017 specifying the measures for air protection on national level and the National Programme for gradual air emissions reduction by 2020 have been adopted in order to define and implement measures on national level.

Targets

Does any of the national documents set target or target should be achieved in accordance with other international documents?

National strategic documents listed as references in the above text provide guidelines and specify actions that should be undertaken as a matter of priority. It is important to mention that bylaws have been prepared in the area of air emissions transposing Directives 96/61/EC, 2000/81/EC, 2000/76/EC, 99/13/EC and 2001/81/EC, ranging between 90 and 100%.

In accordance with the requirements of the UNECE Convention on Long-Range Transboundary Air Pollution, inventory based on EMEP/EEA Guidebook for inventory of polluting substances into the air, setting the target of regular inventory of pollutants in tons per year following the n-2 principle, where n is the current year. For this polluting substance, limit values of air emissions are set in the bylaw which is compliant with the following directives: 2001/80/EC, 1999/13/EC and 2000/76/EC.

Also, targets – basic obligations for this polluting substance are also set in the Protocol to the 1979 UNECE Convention on Long-Range Transboundary Air Pollution concerning persistent organic pollutants, ratified in our country in 2010 (Official Gazette of RM no.135/2010).

Under the Protocol, national overall emissions of PCDD/PCDF in n-2 year (where n is the current year) should not exceed the overall emission calculated for 1990 (taken as baseline year). The Republic of Macedonia is in compliance with this Protocol considering the emissions presented here for 2014. Compared to 1990, emissions of this pollutant have been reduced by 14%.

Legal basis

The Law on Ambient Air Quality adopted in August 2004 and amended several times afterwards (Official Gazette of RM no. 67/2004, 92/2007, 83/2009, 35/10, 47/11, 100/12, 163/2013) is framework law in the area of air. The goals of this Law include avoiding, prevention and reduction of harmful effects on human health and environment as a whole, prevention and abatement of pollutions leading to climate change, as well as provision of appropriate information on the quality of ambient air.

On the basis of the Law on Ambient Air Quality, 16 bylaws were prepared and adopted to introduce limit values for air quality and air emissions, methodology of air quality and air emissions monitoring, manner of preparation of planning documents for air protection against pollution, manner of informing the citizens and international organizations, etc.

In relation to the obligations for calculation of the emissions of dioxins and furans (PCDD/PCDF), the following convention and protocol as international ratified agreements are of relevance:

Stockholm Convention on Persistent Organic Pollutants ratified by the Law on Ratification (Official Gazette of RM no. 17/2004).

Protocol to the 1979 UNECE Convention on Long-Range Transboundary Air Pollution concerning persistent organic pollutants, ratified in our country in 2010 (Official Gazette of RM no.135/2010).

Reporting obligation

- Reporting obligations towards international agreements UNECE-CLRTAP and towards EEA
- Annual Report of Processed Data on Air Emissions

Code	Title of the indicator	Compliance with CSI EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
	Emissions of persistent	EEA	APE 006			air	
MK NI 062	organic pollutants – dioxins			P	В	quality of	annually
	and furans (PCDD/PCDF)	UNECE	A1/11			air	

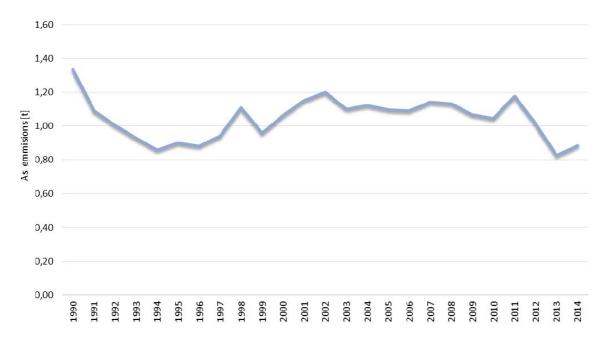
EMMISSION OF HEAVY METALS - ARSENIC (As)

Definition

The indicator tracks the trends in arsenic (As).

Units

t (tons per year)


Key policy issue

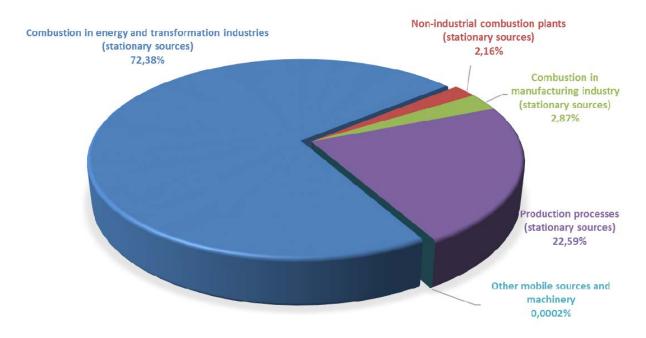
What progress has been made in overall reduction of emissions of arsenic in the Republic of Macedonia?

In 1990, the overall national emissions of As amounted to 1.33 t, followed by reduction in emissions up to 1996 and then by increase with a constant trend by 2010. Nonetheless, during the next tow years, emissions were dropping to rise in 2014 by 7% compared to 2013. The most significant reductions in As emissions occurred in sector 2 - Industrial processes and other products use (production of metals).

The Diagram below shows annual trend in arsenic (As) emissions for the period 1990 to 2014.

Diagram 1.Trend in emissions of arsenic (As)

Assessment

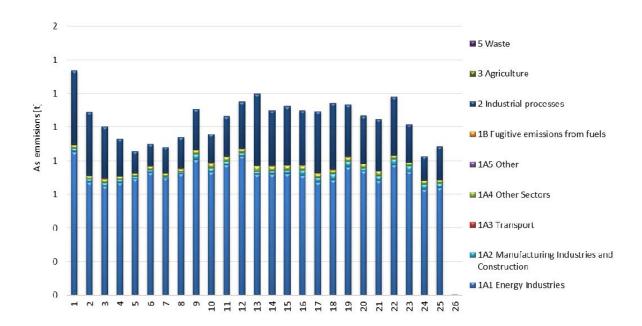

Under the CARDS Programme, Inventory of air emissions of the main pollutants in the country was established in 2005 in accordance with the EMEP methodology by individual sectors, i.e. activities, and in 2014 Inventory including all pollutants was prepared. Sectors based on the above mentioned methodology and SNAP – selective nomenclature of air pollution are presented in the table below:

SNAP	Sector

1	Combustion in energy and transformation industries			
2	Non-industrial combustion plants			
3	Combustion in manufacturing industry			
4	Production processes			
5	Extraction and distribution of fossil fuels and geothermal energy			
6	Solvent and other product use			
7	Road transport			
8	Other mobile sources and machinery			
9	Waste treatment			
10	Agriculture			
11	Nature			

The most important source of As emissions in 2014 was SNAP sector 1 - Combustion in energy and transformation industries with a share of 72%, followed by SNAP sector 4 with 23%. Sectors 2 and 3 had lower share in the emissions of this polluting substance in the range of 2-3%.

Diagram 2. Emissions of Arsenic (As) by SNAP sectors per year in 2014


Policy specific issue

Which different sectors and processes contribute to emissions of Arsenic (As)?

The main sources of As emissions in the period 1990-2014 were the NFR category 1 Energy (where reduced emission of As has been observed during the last years), as well as NFR sector 2 Industrial processes. In the period 2013 to 2014, the overall emissions of this polluting substance increased by 7% owing to increased emissions in all key sectors.

The variable trend of this polluting substance is under the influence of the variable regime of operation of the industrial plants as notable in emissions presented for sector 1A2.

Diagram 3. Emissions of Arsenic (As) by NFR sectors per year

Data coverage: **excel**

Sources of data:

The data used refers to overall national emissions and emissions categorized by NFR delivered by EEA member and collaborating states to EEA and Secretariat of the United Nations. Data is accessible per country on the following web address: http://Arsenicr.eionet.europa.eu/mk/un/UNECE_CLRTAP_MK.

Methodology

Methodology for indicator calculation

The methodology for this indicator calculation is based on calculated national emissions and emissions by NFR sectors of this pollutant as reported to EEA (European Environmental Agency) and UNECE/EMEP (United Nations Economic Commission for Europe/Cooperative programme for monitoring and evaluation for transboundary air pollution transfer under the Convention on Transboundary Air Pollution Transfer) in February 2016. Data used in this report is in accordance with the data submitted, the difference being that additional allocation of national emissions has been made apart from NFR (as sent to international organizations) also by SNAP.

Reference of used methodology

Methodology used for calculation and presentation of this indicator is given in EMEP/EEA Guidebook for inventory of air pollutant emissions of 2009 and Guidebook of 2013 which may be accessed at the following links (http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009 and http://www.eea.europa.eu/publications/emep-eea-guidebook-2013).

Policy relevance of the indicator

Action Plan for European Partnership, as well as National Plan for approximation of the national legislation with European regulations specifying bylaws that need to be prepared have been adopted.

The National Environmental Action Plan (NEAP II) was adopted. It contains the measures that need to be taken to improve the overall status of air quality, including the reduction of emissions of acidifying substances. The National Plan for Ambient Air Protection for the period 2012 to 2017 specifying the measures for air protection on national level and the National Programme for gradual air emissions reduction by 2020 have been adopted in order to define and implement measures on national level.

Targets

Does any of the national documents set target or target should be achieved in accordance with other international documents?

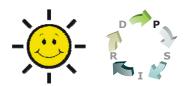
National strategic documents listed as references in the above text provide guidelines and specify actions that should be undertaken as a matter of priority. It is important to mention that bylaws have been prepared in the area of air emissions transposing Directives 96/61/EC, 2000/81/EC, 2000/76/EC, 99/13/EC and 2001/81/EC, ranging between 90 and 100%.

In accordance with the requirements of the UNECE Convention on Long-Range Transboundary Air Pollution, inventory based on EMEP/EEA Guidebook for inventory of polluting substances into the air, setting the target of regular inventory of pollutants in tons per year following the n-2 principle, where n is the current year.

Legal basis

The Law on Ambient Air Quality adopted in August 2004 and amended several times afterwards (Official Gazette of RM no. 67/2004, 92/2007, 83/2009, 35/10, 47/11, 100/12, 163/2013) is framework law in the area of air. The goals of this Law include avoiding, prevention and reduction of harmful effects on human health and environment as a whole, prevention and abatement of pollutions Arsenicing to climate change, as well as provision of appropriate information on the quality of ambient air.

On the basis of the Law on Ambient Air Quality, 16 bylaws were prepared and adopted to introduce limit values for air quality and air emissions, methodology of air quality and air emissions monitoring, manner of preparation of planning documents for air protection against pollution, manner of informing the citizens and international organizations, etc.


In relation to this polluting substance, the limit values and thresholds for assessment in accordance with the Framework Air Directive 2004/107/EC are prescribed in the following bylaws: Decree on the limit values for the levels and types of polluting substances in the ambient air and alert thresholds, deadlines for limit values achievement, margines of tolerance for the limit value, target value ands and long-term objectives and Rulebook on criteria, methods and procedures for ambient air quality assessment.

Reporting obligation

- Reporting obligations towards international agreements UNECE-CLRTAP and towards EEA
- Annual Report of Processed Data on Air Emissions

Code	Title of the indicator	Compliance with CSI EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 063	Emissions of heavy metals – Arsenic (As)			Р	Α	airquality of air	annually

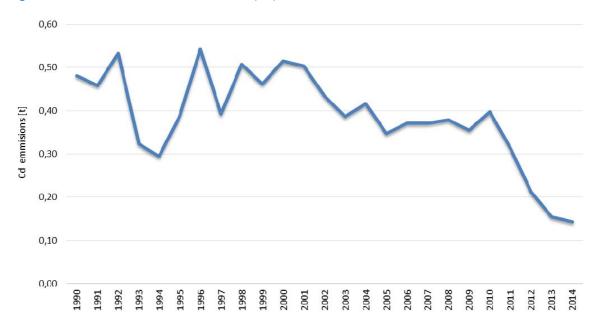
EMMISSION OF HEAVY METALS - CADMIUM (Cd)

Definition

The indicator tracks the trends in cadmium (Cd).

Units

t (tons per year)

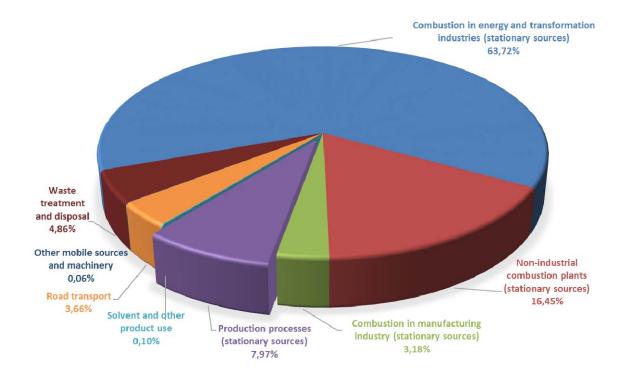

Key policy issue

What progress has been made in overall reduction of emissions of cadmium in the Republic of Macedonia?

In 1990, the overall national emissions of Cd amounted to 0.48 t, followed by constant reduction in emissions to reach 0.143 t or reduction by 70% in 2014 compared to 1990 and 7% compared to 2013. The most significant reduction in Cd emissions occurred in sector 2 - Industrial processes and other products use (production of metals).

The Diagram below shows annual trend in cadmium (Cd) emissions for the period 1990 to 2014.

Diagram 1.Trend in emissions of cadmium (Cd)


Assessment

Under the CARDS Programme, Inventory of air emissions of the main pollutants in the country was established in 2005 in accordance with the EMEP methodology by individual sectors, i.e. activities, and in 2014 Inventory including all pollutants was prepared. Sectors based on the above mentioned methodology and SNAP – selective nomenclature of air pollution are presented in the table below:

SNAP	Sector							
1	Combustion in energy and transformation industries							
2	Non-industrial combustion plants							
3	Combustion in manufacturing industry							
4	Production processes							
5	Extraction and distribution of fossil fuels and geothermal energy							
6	Solvent and other product use							
7	Road transport							
8	Other mobile sources and machinery							
9	Waste treatment							
10	Agriculture							
11	Nature							

The most important source of Cd emissions in 2014 was SNAP sector 1 - Combustion in energy and transformation industries with a share of 64%, followed by SNAP sectors 2 and 4 with 16% and 8%, respectively. Sectors 3, 9 and 7 have low share of this polluting substance of 3-5%.

Diagram 2. Emissions of cadmium (Cd) by SNAP sectors per year in 2014

Policy specific issue

Which different sectors and processes contribute to emissions of cadmium (Cd)?

The main sources of Cd emissions in the period 1990-2014 were the NFR category 2 Industrial processes and product use (by 2004), NFR sector Energy (with approximately constant quantitative emission of Cd for the whole period), as well as NFR sector 1B Fugitive emissions (by 2011, not including 1993-1995). The most significant reductions were observed in 2 Industrial processes and product use (production of metals), as lead and zinc smeltery in Veles terminated the operation in 2003. In the period 2013 to 2014, emissions of this polluting substance were reduced by 7%, mainly owing to reduced fugitive emissions (NFR sector 1B).

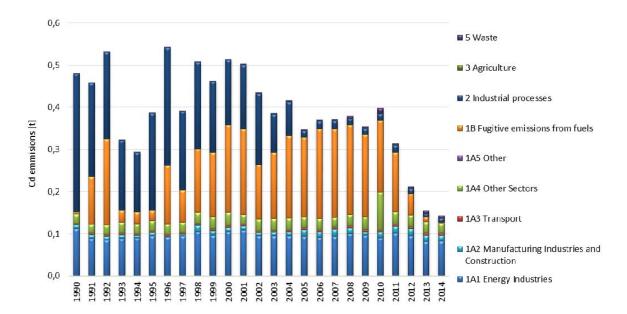


Diagram 3. Emissions of cadmium (Cd) by NFR sectors per year

Data coverage: **exce**

Sources of data:

The data used refers to overall national emissions and emissions categorized by NFR delivered by EEA member and collaborating states to EEA and Secretariat of the United Nations. Data is accessible per country on the following web address: http://cdr.eionet.europa.eu/mk/un/UNECE_CLRTAP_MK.

Methodology

Methodology for indicator calculation

The methodology for this indicator calculation is based on calculated national emissions and emissions by NFR sectors of this pollutant as reported to EEA (European Environmental Agency) and UNECE/EMEP (United Nations Economic Commission for Europe/Cooperative programme for monitoring and evaluation for transboundary air pollution transfer under the Convention on Transboundary Air Pollution Transfer) in February 2016. Data used in this report is in accordance with the data submitted, the difference being that additional allocation of national emissions has been made apart from NFR (as sent to international organizations) also by SNAP.

Reference of used methodology

Methodology used for calculation and presentation of this indicator is given in EMEP/EEA Guidebook for inventory of air pollutant emissions of 2009 and Guidebook of 2013 which may be accessed at the following links (http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009 and http://www.eea.europa.eu/publications/emep-eea-guidebook-2013).

Policy relevance of the indicator

Action Plan for European Partnership, as well as National Plan for approximation of the national legislation with European regulations specifying bylaws that need to be prepared have been adopted.

The National Environmental Action Plan (NEAP II) was adopted. It contains the measures that need to be taken to improve the overall status of air quality, including the reduction of emissions of acidifying substances. The National Plan for Ambient Air Protection for the period 2012 to 2017 specifying the

measures for air protection on national level and the National Programme for gradual air emissions reduction by 2020 have been adopted in order to define and implement measures on national level.

At the same time, for the purpose of air quality improvement in certain local self-government units (LSGUs) with action plans, pilot program was prepared for the City of Bitola, serving as basis for preparation of local planning documents in other cities. Currently air quality plans and short term action plans for city of Skopje and city of Tetovo are under preparation in the Twining project "Further strengthening the capacities for effective implementation of the acquis in the field of air quality", which should be finalized at the end of 2016.

Targets

Does any of the national documents set target or target should be achieved in accordance with other international documents?

National strategic documents listed as references in the above text provide guidelines and specify actions that should be undertaken as a matter of priority. It is important to mention that bylaws have been prepared in the area of air emissions transposing Directives 96/61/EC, 2000/81/EC, 2000/76/EC, 99/13/EC and 2001/81/EC, ranging between 90 and 100%.

In accordance with the requirements of the UNECE Convention on Long-Range Transboundary Air Pollution, inventory based on EMEP/EEA Guidebook for inventory of polluting substances into the air, setting the target of regular inventory of pollutants in tons per year following the n-2 principle, where n is the current year.

Also, targets – basic obligations for this polluting substance are also set in the Protocol to the 1979 UNECE Convention on Long-Range Transboundary Air Pollution concerning heavy metals, ratified in our country in 2010 (Official Gazette of RM no.135/2010).

Under the Protocol, national overall emissions of Cd in n-2 year (where n is the current year) should not exceed the overall emission calculated for 1990 (taken as baseline year). The Republic of Macedonia is in compliance with this Protocol considering the emissions presented here for 2014. Compared to 1990, emissions of this pollutant have been reduced by 70%.

Legal basis

The Law on Ambient Air Quality adopted in August 2004 and amended several times afterwards (Official Gazette of RM no. 67/2004, 92/2007, 83/2009, 35/10, 47/11, 100/12, 163/2013) is framework law in the area of air. The goals of this Law include avoiding, prevention and reduction of harmful effects on human health and environment as a whole, prevention and abatement of pollutions cadmiuming to climate change, as well as provision of appropriate information on the quality of ambient air.

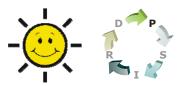
On the basis of the Law on Ambient Air Quality, 16 bylaws were prepared and adopted to introduce limit values for air quality and air emissions, methodology of air quality and air emissions monitoring, manner of preparation of planning documents for air protection against pollution, manner of informing the citizens and international organizations, etc.

In relation to this polluting substance, the limit values and thresholds for assessment in accordance with the Framework Air Directive 2004/107/EC are prescribed in the following bylaws: Decree on the limit values for the levels and types of polluting substances in the ambient air and alert thresholds, deadlines for limit values achievement, margines of tolerance for the limit value, target value ands and long-term objectives and Rulebook on criteria, methods and procedures for ambient air quality assessment.

With regard to obligations for calculation of the emissions of cadmium (Cd), the following protocol as international ratified agreement is of relevance:

Protocol to the 1979 UNECE Convention on Long-Range Transboundary Air Pollution concerning heavy metals, ratified in our country in 2010 (Official Gazette of RM no.135/2010).

Reporting obligation


- Reporting obligations towards international agreements UNECE-CLRTAP and towards EEA
- Annual Report of Processed Data on Air Emissions

General metadata

Code	Title of the indicator		ce with CSI EEA er indicators	Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 063	Emissions of heavy metals – cadmium (Cd)	EEA UNECE	APE 005 A1/7 (Emissions of cadmium (total, stationary and mobile sources))	Р	В	airquality of air	annually

MK - NI 063

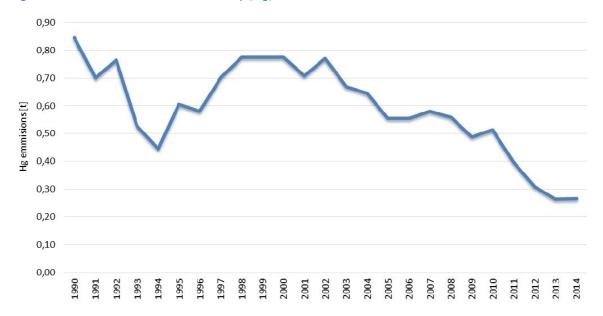
EMMISSION OF HEAVY METALS - MERCURY (Hg)

Definition

The indicator tracks the trends in mercury (Hg).

Units

t (tons per year)

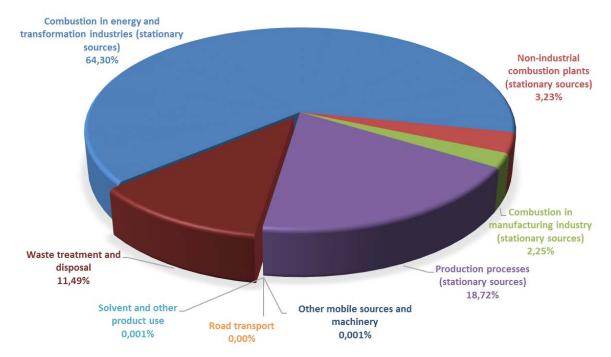

Key policy issue

What progress has been made in overall reduction of emissions of mercury in the Republic of Macedonia?

In 1990, the overall national emissions of Hg amounted to 0.84 t, followed by constant reduction in emissions to reach 0.26 t or reduction by 69% in 2014 compared to 1990. The most significant reductions in Hg emissions occurred in sector 2 - Industrial processes and other products use (production of metals), owing to the termination of the operation of the lead and zinc smeltery in Veles in 2003. Also, fugitive emissions were reduced significantly

The Diagram below shows annual trend in mercury (Hg) emissions for the period 1990 to 2014.

Diagram 1.Trend in emissions of mercury (Hg)

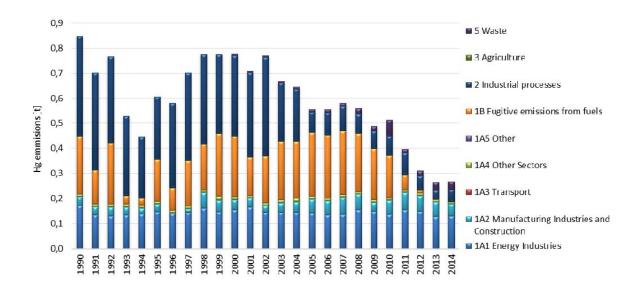

Assessment

Under the CARDS Programme, Inventory of air emissions of the main pollutants in the country was established in 2005 in accordance with the EMEP methodology by individual sectors, i.e. activities, and in 2014 Inventory including all pollutants was prepared. Sectors based on the above mentioned methodology and SNAP – selective nomenclature of air pollution are presented in the table below:

1	Combustion in energy and transformation industries								
2	Non-industrial combustion plants								
3	Combustion in manufacturing industry								
4	Production processes								
5	Extraction and distribution of fossil fuels and geothermal energy								
6	Solvent and other product use								
7	Road transport								
8	Other mobile sources and machinery								
9	Waste treatment								
10	Agriculture								
11	Nature								

The most important source of Hg emissions in 2014 was SNAP sector 1 - Combustion in energy and transformation industries. The second in sector with a share of 19% was SNAP sector 4-Production processes. 12% of the overall mercury emissions originate from sector 9 Treatment of waste.

Diagram 2. Emissions of mercury (Hg) by SNAP sectors per year in 2014



Policy specific issue

Which different sectors and processes contribute to emissions of mercury (Hg)?

The main sources of Hg emissions in the period 1990-2014 were the NFR category 2 Industrial processes and product use (by 2004), NFR sector Energy (with approximately constant quantitative emission of Hg for the whole period), as well as NFR sector 1B Fugitive emissions (by 2011, not including 1993-1995). The most significant reductions were observed in 2 Industrial processes and product use (production of metals), as lead and zinc smeltery in Veles terminated the operation in 2003. Also, fugitive emissions have been reduced significantly for the last several years. In the period 2013 to 2014, the overall emissions of Hg were reduced by 3%.

Diagram 3. Emissions of mercury (Hg) by NFR sectors per year

Data coverage: **excel**

Sources of data:

The data used refers to overall national emissions and emissions categorized by NFR delivered by EEA member and collaborating states to EEA and Secretariat of the United Nations. Data is accessible per country on the following web address: http://Hgr.eionet.europa.eu/mk/un/UNECE_CLRTAP_MK.

Methodology

Methodology for indicator calculation

The methodology for this indicator calculation is based on calculated national emissions and emissions by NFR sectors of this pollutant as reported to EEA (European Environmental Agency) and UNECE/EMEP (United Nations Economic Commission for Europe/Cooperative programme for monitoring and evaluation for transboundary air pollution transfer under the Convention on Transboundary Air Pollution Transfer) in February 2016. Data used in this report is in accordance with the data submitted, the difference being that additional allocation of national emissions has been made apart from NFR (as sent to international organizations) also by SNAP.

Reference of used methodology

Methodology used for calculation and presentation of this indicator is given in EMEP/EEA Guidebook for inventory of air pollutant emissions of 2013http://www.eea.europa.eu/publications/emep-eea-guidebook-2013, Technical report no. 12/2013, EEA. and de Leeuw, F. (2002). Set of emission indicators of long-range transboundary air pollution, Environmental science and policy.

Policy relevance of the indicator

Action Plan for European Partnership, as well as National Plan for approximation of the national legislation with European regulations specifying bylaws that need to be prepared have been adopted.

The National Environmental Action Plan (NEAP II) was adopted. It contains the measures that need to be taken to improve the overall status of air quality, including the reduction of emissions of acidifying substances. The National Plan for Ambient Air Protection for the period 2012 to 2017 specifying the measures for air protection on national level and the National Programme for gradual air emissions reduction by 2020 have been adopted in order to define and implement measures on national level.

At the same time, for the purpose of air quality improvement in certain local self-government units (LSGUs) with action plans, pilot program was prepared for the City of Bitola, serving as basis for preparation of local planning documents in other cities. Currently air quality plans and short term action plans for city of Skopje and city of Tetovo are under preparation in the Twining project "Further strengthening the capacities for effective implementation of the acquis in the field of air quality", which should be finalized at the end of 2016.

Targets

Does any of the national documents set target or target should be achieved in accordance with other international documents?

National strategic documents listed as references in the above text provide guidelines and specify actions that should be undertaken as a matter of priority. It is important to mention that bylaws have been prepared in the area of air emissions transposing Directives 96/61/EC, 2000/81/EC, 2000/76/EC, 99/13/EC and 2001/81/EC, ranging between 90 and 100%.

In accordance with the requirements of the UNECE Convention on Long-Range Transboundary Air Pollution, inventory based on EMEP/EEA Guidebook for inventory of polluting substances into the air, setting the target of regular inventory of pollutants in tons per year following the n-2 principle, where n is the current year.

Also, targets – basic obligations for this polluting substance are also set in the Protocol to the 1979 UNECE Convention on Long-Range Transboundary Air Pollution concerning heavy metals, ratified in our country in 2010 (Official Gazette of RM no.135/2010).

Under the Protocol, national overall emissions of Hg in n-2 year (where n is the current year) should not exceed the overall emission calculated for 1990 (taken as baseline year). The Republic of Macedonia is in compliance with this Protocol considering the emissions presented here for 2014. Compared to 1990, emissions of this pollutant have been reduced by 69%.

Legal basis

The Law on Ambient Air Quality adopted in August 2004 and amended several times afterwards (Official Gazette of RM no. 67/2004, 92/2007, 83/2009, 35/10, 47/11, 100/12, 163/2013) is framework law in the area of air. The goals of this Law include avoiding, prevention and reduction of harmful effects on human health and environment as a whole, prevention and abatement of pollutions mercurying to climate change, as well as provision of appropriate information on the quality of ambient air.

On the basis of the Law on Ambient Air Quality, 16 bylaws were prepared and adopted to introduce limit values for air quality and air emissions, methodology of air quality and air emissions monitoring, manner of preparation of planning documents for air protection against pollution, manner of informing the citizens and international organizations, etc.

With regard to obligations for calculation of the emissions of mercury (Hg), the following protocol and convention as international ratified agreements are of relevance:

- Protocol to the 1979 UNECE Convention on Long-Range Transboundary Air Pollution concerning heavy metals, ratified in our country in 2010 (Official Gazette of RM no.135/2010).
- Minamata Convention on Mercury, which was signed on 25 July 2014.

Reporting obligation

- Reporting obligations towards international agreements UNECE-CLRTAP and towards EEA
- Annual Report of Processed Data on Air Emissions

General metadata

Code	Title of the indicator	Compliance with CSI EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 063	Emissions of heavy metals – mercury (Hg)	EEA UNECE	APE 005 A1/8	Р	Α	airquality of air	annually

MK - NI 063

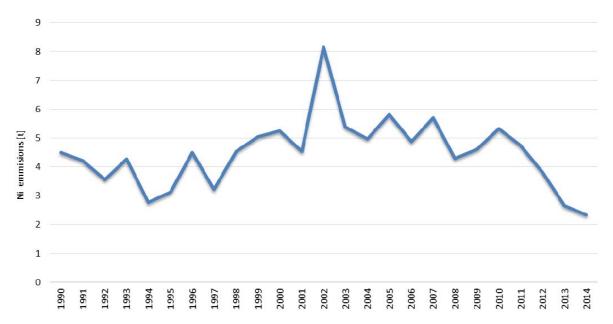
EMMISSION OF HEAVY METALS - NICKEL (Ni)

Definition

The indicator tracks the trends in nickel (Ni).

Units

t (tons per year)


Key policy issue

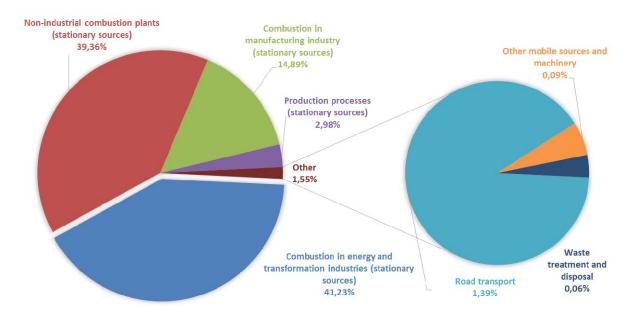
What progress has been made in overall reduction of emissions of nickel in the Republic of Macedonia?

In 1990, the overall national emissions of Ni amounted to 4.5 t, with emissions manifesting variable trend with a jump in 2002, followed again by variable trend and continuous reduction since 2010. Emissions in 2014 were reduced by 12% compared to 2013.

The Diagram below shows annual trend in nickel (Ni) emissions for the period 1990 to 2014.

Diagram 1.Trend in emissions of nickel (Ni)

Assessment

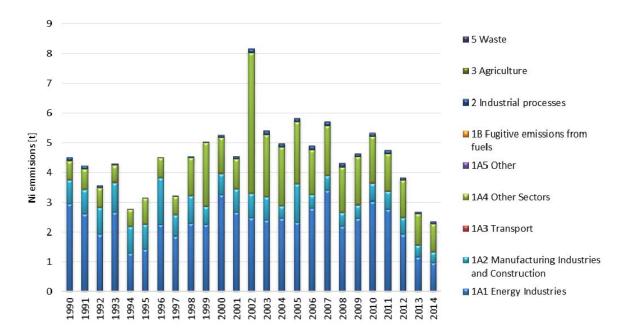

Under the CARDS Programme, Inventory of air emissions of the main pollutants in the country was established in 2005 in accordance with the EMEP methodology by individual sectors, i.e. activities, and in 2014 Inventory including all pollutants was prepared. Sectors based on the above mentioned methodology and SNAP – selective nomenclature of air pollution are presented in the table below:

SNAP	Sector
1	Combustion in energy and transformation industries
2	Non-industrial combustion plants

3	Combustion in manufacturing industry							
4	Production processes							
5	Extraction and distribution of fossil fuels and geothermal energy							
6	Solvent and other product use							
7	Road transport							
8	Other mobile sources and machinery							
9	Waste treatment							
10	Agriculture							
11	Nature							

The most important source of Ni emissions in 2014 wNi SNAP sector 1 - Combustion in energy and transformation industries with a share of 41%, followed by SNAP sectord 2 and 3 with shares of 39% and 15%, respectively. Production processes contributed 3%.

Diagram 2. Emissions of nickel (Ni) by SNAP sectors per year in 2014



Policy specific issue

Which different sectors and processes contribute to emissions of nickel (Ni)?

The main sources of Ni emissions in the period 1990-2014 were the NFR sector 1 Energy (with approximately constant quantitative emission of Ni for the whole period), as well as NFR sectors 1A4 (combustion in industrial combustion plants with variable trend and combustion in non-industrial combustion plants with falling trend of the emission of this polluting substance). Emissions compared to 1990 were reduced due to reduced emissions in energy sector. In the period 2013 to 2014, the emissions of this polluting substance reduced by 12%, mainly due to lower emissions, i.e. lower consumption of fuels in energy and industrial sectors.

Diagram 3. Emissions of nickel (Ni) by NFR sectors per year

Data coverage: **excel**

Sources of data:

The data used refers to overall national emissions and emissions categorized by NFR delivered by EEA member and collaborating states to EEA and Secretariat of the United Nations. Data is accessible per country on the following web address: http://Nickelr.eionet.europa.eu/mk/un/UNECE CLRTAP MK.

Methodology

Methodology for indicator calculation

The methodology for this indicator calculation is based on calculated national emissions and emissions by NFR sectors of this pollutant Ni reported to EEA (European Environmental Agency) and UNECE/EMEP (United Nations Economic Commission for Europe/Cooperative programme for monitoring and evaluation for transboundary air pollution transfer under the Convention on Transboundary Air Pollution Transfer) in February 2016. Data used in this report is in accordance with the data submitted, the difference being that additional allocation of national emissions has been made apart from NFR (as sent to international organizations) also by SNAP.

Reference of used methodology

Methodology used for calculation and presentation of this indicator is given in EMEP/EEA Guidebook for inventory of air pollutant emissions of 2009 and Guidebook of 2013 which may be accessed at the following links (http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009 and http://www.eea.europa.eu/publications/emep-eea-guidebook-2013).

Policy relevance of the indicator

Action Plan for European Partnership, as well as National Plan for approximation of the national legislation with European regulations specifying bylaws that need to be prepared have been adopted.

The National Environmental Action Plan (NEAP II) was adopted. It contains the measures that need to be taken to improve the overall status of air quality, including the reduction of emissions of acidifying substances. The National Plan for Ambient Air Protection for the period 2012 to 2017 specifying the measures for air protection on national level and the National Programme for gradual air emissions reduction by 2020 have been adopted in order to define and implement measures on national level.

At the same time, for the purpose of air quality improvement in certain local self-government units (LSGUs) with action plans, pilot program was prepared for the City of Bitola, serving as basis for preparation of local planning documents in other cities. Currently air quality plans and short term action plans for city of Skopje and city of Tetovo are under preparation in the Twining project "Further strengthening the capacities for effective implementation of the acquis in the field of air quality", which should be finalized at the end of 2016.

Targets

Does any of the national documents set target or target should be achieved in accordance with other international documents?

National strategic documents listed as references in the above text provide guidelines and specify actions that should be undertaken as a matter of priority. It is important to mention that bylaws have been prepared in the area of air emissions transposing Directives 96/61/EC, 2000/81/EC, 2000/76/EC, 99/13/EC and 2001/81/EC, ranging between 90 and 100%.

In accordance with the requirements of the UNECE Convention on Long-Range Transboundary Air Pollution, inventory based on EMEP/EEA Guidebook for inventory of polluting substances into the air, setting the target of regular inventory of pollutants in tons per year following the n-2 principle, where n is the current year.

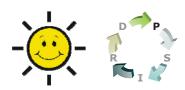
Legal basis

The Law on Ambient Air Quality adopted in August 2004 and amended several times afterwards (Official Gazette of RM no. 67/2004, 92/2007, 83/2009, 35/10, 47/11, 100/12, 163/2013) is framework law in the area of air. The goals of this Law include avoiding, prevention and reduction of harmful effects on human health and environment as a whole, prevention and abatement of pollutions cadmiuming to climate change, as well as provision of appropriate information on the quality of ambient air.

On the basis of the Law on Ambient Air Quality, 16 bylaws were prepared and adopted to introduce limit values for air quality and air emissions, methodology of air quality and air emissions monitoring, manner of preparation of planning documents for air protection against pollution, manner of informing the citizens and international organizations, etc.

In relation to this polluting substance, the limit values and thresholds for assessment in accordance with the Framework Air Directive 2004/107/EC are prescribed in the following bylaws: Decree on the limit values for the levels and types of polluting substances in the ambient air and alert thresholds, deadlines for limit values achievement, margines of tolerance for the limit value, target value ands and long-term objectives and Rulebook on criteria, methods and procedures for ambient air quality assessment.

Reporting obligation


- Reporting obligations towards international agreements UNECE-CLRTAP and towards EEA
- Annual Report of Processed Data on Air Emissions

General metadata

Code	Title of the indicator	Compliance with CSI EEA or other indicators		CINisification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 063	Emissions of heavy metals – nickel (Ni)			Р	A	airquality ofair	annually

MK - NI 063

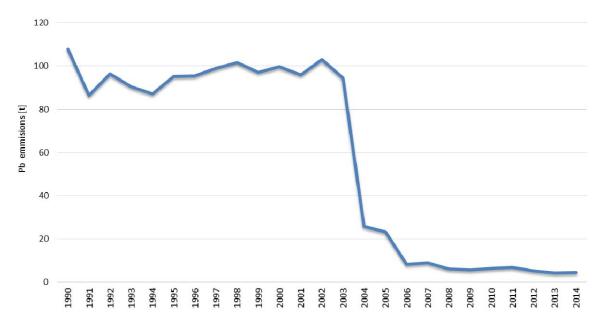
EMMISSION OF HEAVY METALS - LEAD (Pb)

Definition

The indicator tracks the trends in lead (Pb).

Units

t (tons per year)


Key policy issue

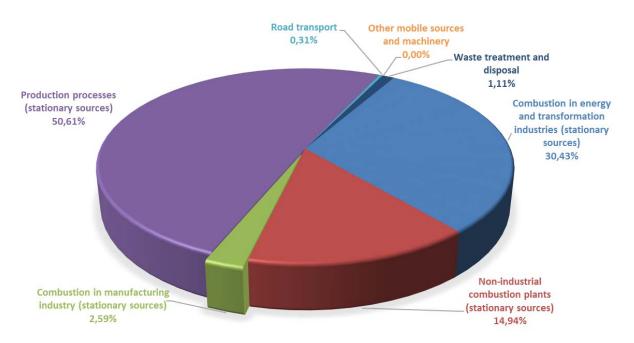
What progress has been made in overall reduction of emissions of lead in the Republic of Macedonia?

In 1990, the overall national emissions of Pb amounted to 108 t, followed by constant reduction in emissions to reach 4.5 t or reduction by 96% in 2014 compared to 1990. The most significant reductions occurred in sectors 7-Transport and SNAP 4- Production processes.

The Diagram below shows annual trend in lead (Pb) emissions for the period 1990 to 2014.

Diagram 1.Trend in emissions of lead (Pb)

Assessment


Under the CARDS Programme, Inventory of air emissions of the main pollutants in the country was established in 2005 in accordance with the EMEP methodology by individual sectors, i.e. activities, and in 2014 Inventory including all pollutants was prepared. Sectors based on the above mentioned methodology and SNAP – selective nomenclature of air pollution are presented in the table below:

SNAP	Sector
1	Combustion in energy and transformation industries
2	Non-industrial combustion plants

3	Combustion in manufacturing industry							
4	Production processes							
5	Extraction and distribution of fossil fuels and geothermal energy							
6	Solvent and other product use							
7	Road transport							
8	Other mobile sources and machinery							
9	Waste treatment							
10	Agriculture							
11	Nature							

In 1990, the overall national emissions of Pb amounted 108 t, followed by constant reduction in emissions to reach 4.5 t or reduction by 96% in 2014 compared to 1990. The most significant reductions occurred in sectors 1A3-Transport and 2-Industrial processes and product use (mainly lead production). The great drop in Pb emissions from 2003 and 2004 is related the main source of these emissions – Road transport and Production of lead. Since 2004, content of lead in petrols has been reduced from 0.0006 kg/L to 0.00015 kg/L. Also, in 2003, the lead and zinc smeltery "Zletovo" in Veles terminated the production of lead and zinc. Since 2006, passenger vehicles in the Republic of Macedonia may use only lead free petrols which contributes to further reduction of Pb.

Diagram 2. Emissions of lead (Pb) by SNAP sectors per year in 2014

Policy specific issue

Which different sectors and processes contribute to emissions of lead (Pb)?

The main sources of Pb emissions are the NFR sectors 2 Industrial processes and product use and 1 Energy.

The most significant sources of Pb in 2014 were NFR sectors 2 Industrial processes and product use and 1 Energy with shares in the overall national emissions of Pb of 51% (13% in 1990) and 48% (88% in 1990), respectively. Within the NFR sector 2 Industrial processes and product use, all emissions of Pb resulted from 2C Production of metals (2C1 Production of iron and steel) in 2014. Within the sector Energy, the main sources in 2014 were 1A2 Manufacturing industry with a share of 18% in the overall national emissions, as well as sectors 1A1 Energy industries and 1A4 Other sectors with shares of 15% each.

NFR sectors 1B Fugitive emissions, 3 Agriculture and 5 Waste are insignificant sources of Pb emissions.

120 ■ 5 Waste ■ 3 Agriculture 100 2 Industrial processes 80 ■ 1B Eugitive emissions from fuels 60 ■ 1A5 Other 40 ■ 1A3 Transport 20 ■ 1A2 Manufacturing Industries and Construction ■ 1A1 Energy Industries 8661 1997 6661 2000 2001 2004 5006 2005

Diagram 3. Emissions of lead (Pb) by NFR sectors per year

Data coverage: **excel**

Sources of data:

The data used refers to overall national emissions and emissions categorized by NFR delivered by EEA member and collaborating states to EEA and Secretariat of the United Nations. Data is accessible per country on the following web address: http://Pbr.eionet.europa.eu/mk/un/UNECE CLRTAP MK.

Methodology

Methodology for indicator calculation

The methodology for this indicator calculation is based on calculated national emissions and emissions by NFR sectors of this pollutant as reported to EEA (European Environmental Agency) and UNECE/EMEP (United Nations Economic Commission for Europe/Cooperative programme for monitoring and evaluation for transboundary air pollution transfer under the Convention on Transboundary Air Pollution Transfer) in February 2016. Data used in this report is in accordance with the data submitted, the difference being that additional allocation of national emissions has been made apart from NFR (as sent to international organizations) also by SNAP.

Calculations are in line with the Guidebook of EMEP/EEA on air emissions inventory taking published in 2009 and 2013. The Guidebook contains emission factors which have been used in the calculations.

Reference of used methodology

Methodology used for calculation and presentation of this indicator is given in EMEP/EEA Guidebook for inventory of air pollutant emissions of 2009 and Guidebook of 2013 which may be accessed at the following links (http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009 and http://www.eea.europa.eu/publications/emep-eea-guidebook-2013).

Policy relevance of the indicator

Action Plan for European Partnership, as well as National Plan for approximation of the national legislation with European regulations specifying bylaws that need to be prepared have been adopted.

The National Environmental Action Plan (NEAP II) was adopted. It contains the measures that need to be taken to improve the overall status of air quality, including the reduction of emissions of acidifying substances. The National Plan for Ambient Air Protection for the period 2012 to 2017 specifying the measures for air protection on national level and the National Programme for gradual air emissions reduction by 2020 have been adopted in order to define and implement measures on national level.

At the same time, for the purpose of air quality improvement in certain local self-government units (LSGUs) with action plans, pilot program was prepared for the City of Bitola, serving as basis for preparation of local planning documents in other cities. Currently air quality plans and short term action plans for city of Skopje and city of Tetovo are under preparation in the Twining project "Further strengthening the capacities for effective implementation of the acquis in the field of air quality", which should be finalized at the end of 2016.

Targets

Does any of the national documents set target or target should be achieved in accordance with other international documents?

National strategic documents listed as references in the above text provide guidelines and specify actions that should be undertaken as a matter of priority. It is important to mention that bylaws have been prepared in the area of air emissions transposing Directives 96/61/EC, 2000/81/EC, 2000/76/EC, 99/13/EC and 2001/81/EC, ranging between 90 and 100%.

In accordance with the requirements of the UNECE Convention on Long-Range Transboundary Air Pollution, inventory based on EMEP/EEA Guidebook for inventory of polluting substances into the air, setting the target of regular inventory of pollutants in tons per year following the n-2 principle, where n is the current year.

Also, targets – basic obligations for this polluting substance are also set in the Protocol to the 1979 UNECE Convention on Long-Range Transboundary Air Pollution concerning heavy metals, ratified in our country in 2010 (Official Gazette of RM no.135/2010).

Under the Protocol, national overall emissions of Pb in n-2 year (where n is the current year) should not exceed the overall emission calculated for 1990 (taken as baseline year). The Republic of Macedonia is in compliance with this Protocol considering the emissions presented here for 2014. Compared to 1990, emissions of this pollutant have been reduced by 96%.

Legal grounds

The Law on Ambient Air Quality adopted in August 2004 and amended several times afterwards (Official Gazette of RM no. 67/2004, 92/2007, 83/2009, 35/10, 47/11, 100/12, 163/2013) is framework law in the area of air. The goals of this Law include avoiding, prevention and reduction of harmful effects on human health and environment as a whole, prevention and abatement of pollutions leading to climate change, as well as provision of appropriate information on the quality of ambient air.

On the basis of the Law on Ambient Air Quality, 16 bylaws were prepared and adopted to introduce limit values for air quality and air emissions, methodology of air quality and air emissions monitoring, manner of preparation of planning documents for air protection against pollution, manner of informing the citizens and international organizations, etc.

In relation to this polluting substance, the limit values and thresholds for assessment in accordance with the Framework Air Directive 2008/50/EC are prescribed in the following bylaws: Decree on the limit values for the levels and types of polluting substances in the ambient air and alert thresholds, deadlines

for limit values achievement, margines of tolerance for the limit value, target value ands and long-term objectives and Rulebook on criteria, methods and procedures for ambient air quality assessment.

With regard to obligations for calculation of the emissions of lead (Pb), the following protocol as international ratified agreement is of relevance:

Protocol to the 1979 UNECE Convention on Long-Range Transboundary Air Pollution concerning heavy metals, ratified in our country in 2010 (Official Gazette of RM no.135/2010).

Reporting obligation

- Reporting obligations towards international agreements UNECE-CLRTAP and towards EEA
- Annual Report of Processed Data on Air Emissions

General metadata

Code	Title of the indicator		e with CSI EEA r indicators	Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 063	Emissions of heavy metals – lead (Pb)	EEA UNECE	APE 005 A1/6	Р	В	airquality of air	annually

MATURE AND BIODIVERSITY

MK - NI 007

THREATENED AND PROTECTED SPECIES

Definition

This indicator shows the number of species present in the Republic of Macedonia and assessed as globally threatened and/or protected by European instruments, such as: Rio Convention on Biological Diversity, Bonn Convention on the Conservation of Migratory Species of Wild Animals, Hague Agreement on the Conservation of Migratory Waterbirds, London Agreement on Bats Protection, EU Directives on habitats and wild birds and Bern Convention on the Conservation of European Wildlife and Natural Habitats, protected at national level.

At present, the indicator shows the status of the number of endemic and threatened species at national level, identified in accordance with the relevant international documents and the national legislation:

- Number of endemic and threatened wild species of plants (flora)
- Number of endemic and threatened wild species of native fungi
- Number of endemic and threatened wild species of animals (fauna)

Units

Number of species

Key policy issue

How many species of global/European significance are protected by national instruments?

Key message

Abundance and variety of ecosystems, types of natural habitats and wild species, as well as genetic resources, are the main features of biological diversity in the Republic of Macedonia. According to the available information, this wealth comprises the imposing number of around 17.604 species, out of which 976 species are endemic species.

Considering the fact that national Red Lists of animals, plants and fungi are under establishment, the analysis of threatened and protected wild species has been made in accordance with international criteria contained in a number of multilateral documents (conventions, agreements, Global Red List, European Red List, EU Directives).

Thus, the IUCN World Red List contains 72 taxa of higher plants from the Republic of Macedonia, 19 of which are local endemic taxa.

The Annexes of the Bern Convention include 12 species of higher plants.

The European List of vertebrate animals includes 113 species, of which: 30 fish species, 66 bird species16 mammals and 1 reptile species. Out of the total of 20 endemic fish species from the Republic of Macedonia, 17 have been enrolled in the category of globally threatened species. The total number of identified "Emerald" species (under Resolution No.6 to the Bern Convention) on the territory of the Republic of Macedonia is 165 species.

Figure 1. Number of protected species of animals



Figure 2. Number of endemic species of animals

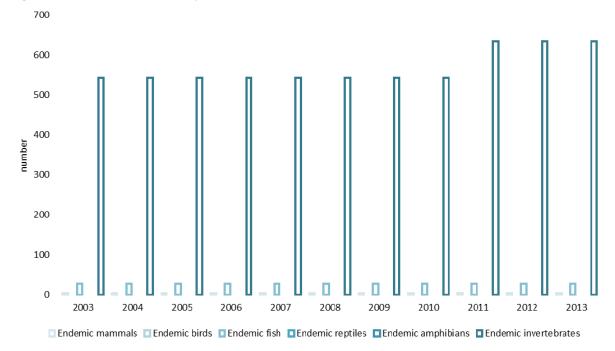


Figure 3. Number of threatened species of animals

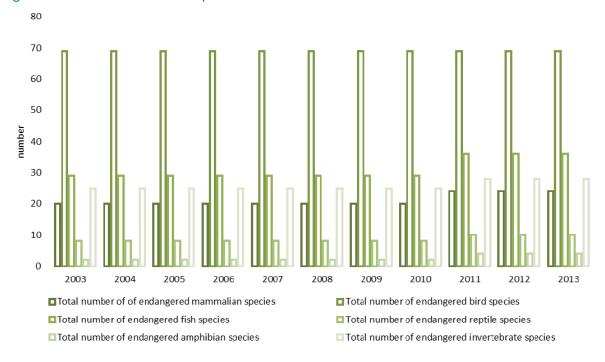


Figure 4. Number of protected species of plants

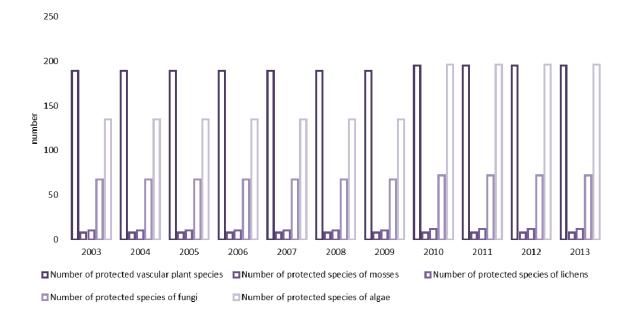


Figure 5. Number of endemic species of plants

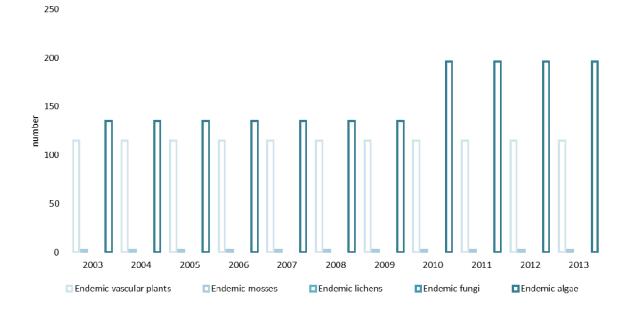
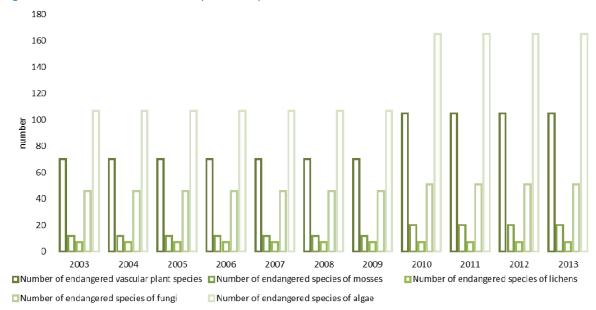



Figure 6. Number of threatened species of plants

Data 480 500 450 400 350 300 250 195 200 150 115 80 100 60 55 30 50 27 17 12 0 invertebrates fish amphibians reptiles mammals birds flora ■ Resolution 6 Emerald species Emerald species identified in the Republic of Macedonia

Figure 7. Number of Emerald species in Europe and in the Republic of Macedonia

coverage: excel

Sources of data: Study of Biological Diversity in the Republic of Macedonia, Strategy and Action Plan for Biological Diversity Protection in the Republic of Macedonia, Report on the establishment of the National Emerald Network, Analysis and valorization of species diversity in the Republic of Macedonia.

Assessment

The **flora** of the Republic of Macedonia is very rich and diverse and represented by 5.843 species, of which 2.169 algae and 3.674 species of plants. Recent flora of higher plants is a mosaic of various floral elements: Tertiary relicts, Mediterranean, Greek-Asia Minor, Illyric, Caucasian, Middle European, Skardo-Pindian, Eurasian, Arctic-Alpine, cosmopolitan, among which 228 species are endemic (Balkan, South Balkan, Macedonian, local, etc.). The highest number of endemic plant species (114) has been recorded with *Angiosperms*.

The National Red List of threatened wild plant species is under establishment. The number of threatened wild plant species is shown in Table 1. The assessment of threat of species by taxonomic groups has been carried out in accordance with international criteria contained in several international documents (conventions, agreements, Global Red List, European Red List, EU Directives).

The IUCN Global Red List contains 72 taxa from the Republic of Macedonia, 19 of which are local endemic species. The Annexes of the Bern Convention list 12 plant species having their area of spreading on the territory of the Republic of Macedonia.

Lichens are represented by 354 species. Considering lichens studied in the Republic of Macedonia, no lichen species have been included in Annexes I and II of EU Habitat Directive. On national level, 12 lichen species have been identified to have status of being threatened.

Fungi compose exceptionally heterogeneous group of organisms and explorations so far have focused on the phyla of *Ascomycota* and *Basidiomycota*, while others are poorly studied. The total number of studied and recorded native fungi on the territory of the Republic of Macedonia is 1245 species. Most of those belong to the phyla *Myxomicota* (10), *Oomycota* (20), *Zygomicota* (35), *Ascomycota* (130) and *Basidiomycota* (1050).

From among studied native fungi in the Republic of Macedonia, no species has been included in Annexes II and IV of the Habitat Directive. The Preliminary National Red List of threatened fungi species includes 67 species belonging to the phylum of *Basidiomycota*.

Fauna diversity is characterized with high extent of taxonomic diversity, represented by 10.354 species and 228 subspecies or 10.582 taxa in total.

Invertebrate animals (Invertebrata) are represented by 9.819 species, 635 of which are endemic. Nevertheless, detailed analyses of threat to species by taxonomic groups have not been completed yet, and therefore the number of preliminary listed species is only 25 invertebrate animal species.

Vertebrate wild animals (Vertebrata) are represented by 535 species, 30 of which are endemic species. The class of fish includes 78 species, 27 (34.5%) of which are endemic species. No endemic species have been recorded among the classes of amphibians, reptiles and birds, while three endemic species have been recorded with the class of mammals. With regard to the extent of threat to populations of vertebrate animals, the class of fish has 18 species included in the category of globally threatened species.

It is of particular importance to point out that the fauna of vertebrate animals includes 113 species that have been enrolled on the European Red List, namely: 30 species of fish, 66 birds, 16 mammals and 1 reptile species. The National Red List of threatened fauna species is under development.

Within the species diversity, particular significance is attributed to the identified "Emerald" species. Namely, total of 165 species have been identified, as follows: 6 species of invertebrate animals, 154 vertebrate animals (12 species of fish, 3 species of amphibians, 7 species of reptiles, 115 species of birds, 17 species of mammals and 5 species of plants).

Two lists of strictly protected and protected species were adopted on national level (2011).

List 1: Strictly protected wild species in the Republic of Macedonia includes: 9 species of native fungi, 51 plant species, 36 invertebrate species and 98 vertebrate species.

List 2: Protected wild species in the Republic of Macedonia includes: 63 species of native fungi, 12 species of lichen, 151 plant species, 507 invertebrate species and 87 vertebrate species.

Policy relevance of the indicator

List of relevant policy documents:

The Second National Environmental Action Plan, in its Chapter on Nature, emphasizes the goal of the establishment of integrated system for nature and biological diversity protection, in line with multilateral agreements and EU standards, through the measure for application of mechanisms for further implementation of the National Strategy for Biological Diversity Protection with Action Plan and the National Capacity Self-Assessment (NCSA), the Law on Nature Protection and creation of appropriate conditions for Natura 2000 network establishment. It envisages action towards development of National Red Lists and Red Book of the Republic of Macedonia.

The National Strategy for Biological Diversity Protection with Action Plan (NSBAP) defines integrated approach to the protection and sustainable use of components of biological diversity. The Strategic Action Plan (SAP) outlines the specific actions to be taken to achieve the targets. One of the measures in this document is the Protection of Species, through several actions concerning

elaboration of National Red Lists and Red Book of the Republic of Macedonia, and protection of globally endangered wild species. Particularly important conservation activities concern protection of butterflies, Pelister, Pelagonia and Lokven dragonfly, Macedonian crayfish, From among vertebrate animals, critically endangered and endangered endemic and other fish species (lamprey, trout, eel), amphibians (sand-hoppers, frogs), reptiles (turtles, lizards, snakes), birds of prey (vultures, eagles, falcons, wild species of migratory waterbirds, other wild bird species, small size mammals (rodents, bats), wild carnivores: bear, lynx, wolf, golden jackal, otter, marten, badger, souslik, Balkan snow vole, Balkan chamois, red deer, deer, etc.

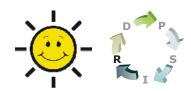
From among plants, the following have been identified: endemic and relict species Ema's *Thymus oehmianus*, Alshar's *Thymus alcharensis*, Macedonian ramonda (Ramonda macedonica), Balkan ramonda (Ramonda serbica), Mariana's tulip (Tulipa marianae), Sharplanina tulip (Tulipa scardica), Mayer's nepeta (Nepeta ernesti-mayeri), Alshar's violet (Viola allchariensis), Arsen's violet (Viola arsenica), Koshaninova violet (Viola kosaninii), spring Adonis flower (Adonis vernalis), orchids (Orchidaceae), Macedonian dwarf pine (Pinus mugo macedonicus), Macedonian oak (Quercus macedonicus), etc.

Legal grounds

The Law on Nature Protection provides for elaboration of National Red Lists and Red Book of the Republic of Macedonia, as well as proclamation of strictly protected wild species and protected wild species, by which they shall acquire the status of natural heritage. It is also legal obligation to establish Cadastre of protected areas and Registry of natural heritage including also strictly protected and protected wild species in the Republic of Macedonia.

Targets

Identification of the extent of threat for certain species of plants, lichens, fungi and animals found in the Republic of Macedonia, which are of global, European and national significance and definition of measures for their protection and conservation.


Reporting obligation

- UNEP/CBD Secretariat
- Secretariat of UNEP/CMS, AEWA, EUROBATS
- Secretariat of BC/CE

General metadata

Code	Title of the indicator	CSI/E	pliance with EEA or other ndicators	Classification by DPSIR	Type	Linkage with area	Frequency of publication
MK NI 007	Threatened and protected species	CSI 007	Threatened and protected species	s/ı		■ Biological diversity	5 - annually

MK – NI 008 DESIGNATED AREAS

Definition

The indicator shows the proportion of a country designated total area that is protected under national instruments, or under the EU Birds and/or Habitats Directives (Natura 2000 sites), or under the Bern Convention (Emerald sites) and other multilateral agreements.

 Total (cumulative) designated area of sites protected under national instruments, or under the EU Birds and/or Habitats Directives and under multilateral agreements over the time.

The indicator is also broken down to show the different trends of surface area in km² designated under international conventions and initiatives, under EU Directives and under national legislation:

- Number of protected areas under the national categorization
- Percentile representation of individual national categories of protected areas out of the total protected area
- Changes over time in cumulative surface area of Emerald sites (designated under the Bern Convention).
- International instruments

Units

Number of sites, ha, km2 and %.

Key policy issue

What is the progress in designation of areas (km², %) under the national legislation, EU Directives and multilateral agreements?

Key message

As of 1948, when the First National Park "Pelister" was designated in the Republic of Macedonia, the number and the total surface area of different categories of protected areas have noted permanent growth on national level.

At this moment, due to the new categorization of designated areas established under the new Law on Nature Protection, in accordance with the IUCN categorization, the designated area system is in transition and includes designated areas under the old and under the new categorization. The analysis (in relation to the number and the area) includes all designated areas in the Republic of Macedonia designated under the old and also under the new categorization. In doing so, the areas designated in accordance with the old categorization have been processed according to the appropriate/corresponding IUCN category. The analysis of the area of the designated areas has been made by rendering the borders of the areas in GIS.

Presently, the network of protected areas includes 86 areas in total and these occupy area of 229.900 ha or 8.94 % of the territory of the Republic of Macedonia. The largest portion is occupied by national parks and nature monuments.

Total of 35 sites have been identified in the National Emerald network of areas of special conservation interest. They occupy an area of 752.223 ha or 29 % of its territory.

Figure 1. Total area of designated areas

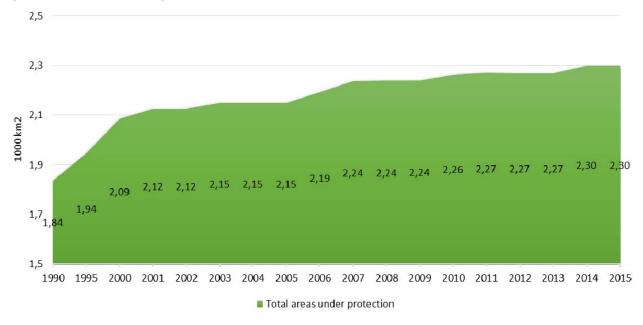


Figure 2. Area of designated areas by category of conservation

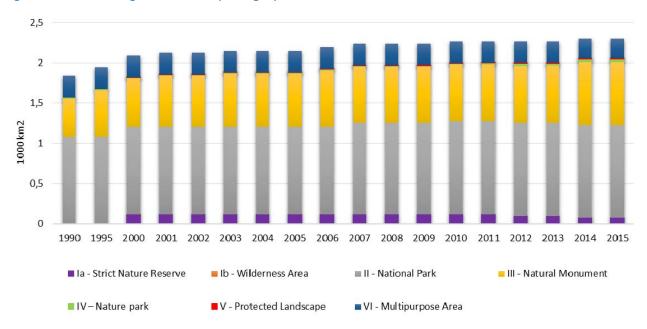


Figure 3. Share of individual national categories of designated areas in the overall territory of the Republic of Macedonia

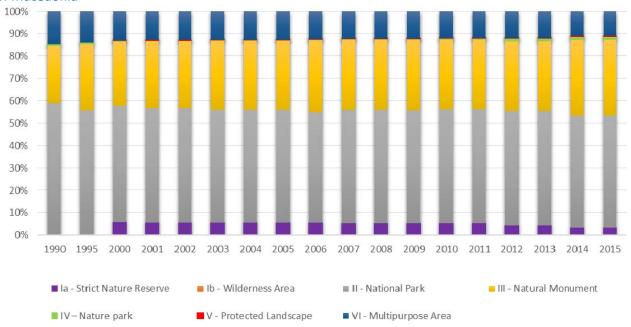
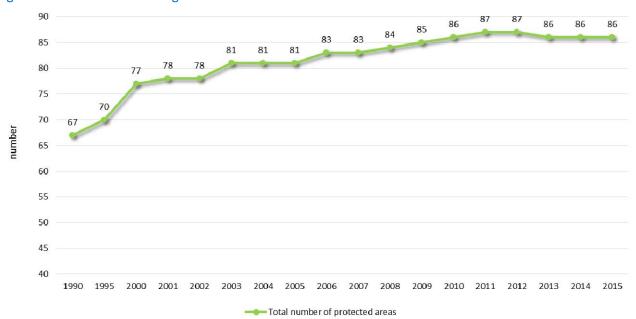



Figure 4. Total number of designated areas

8.000 7.000 5,000 5.000 2 4.000 3.000 2.000 1.000 0 Second project Total First project Third project Fourth project (2002-2003)(2004)(2005-2006)(2008)

Figure 5. Area of identified Emerald areas

Data coverage: **excel**

Source: MoEPP - CDDA, Emerald database

Assessment

1. Designated areas at national level

Under the 2004 Law on Nature Protection, new categorization of designated area is introduced, aligned with the International Union for Conservation of Nature (IUCN), enabling inclusion of the national designated areas in the world network of designated areas. The Law stipulates a responsibility that, within 6 years, all designated areas (nominated before 2004) to be re-evaluated and designated accordance with the new categorization. Because of the current transitional period, the network of designated areas (areas designated according to the new categorization redesignated areas) the analysis (regarding the number and area they occupy) includes all designated areas in the Republic of Macedonia, designated under the old and also the new categorization. In doing so, the areas designated in accordance with the old categorization have been processed according to the appropriate/corresponding IUCN category. The analysis of the area of the designated areas has been made by rendering the borders of the areas in GIS (according to the data from the acts of designation or redesignation of areas, the Spatial Plan of the Republic of Macedonia, and where precise data in the Spatial Plan were missing, the area of the designated areas was rendered in accordance with the experts opinion).¹

In the analyzed period, the area of designated areas has grown, i.e. the share of designated areas in the overall area of Macedonia in 1990 was 7.14% and in 2015 it grew to 8.94 %. Also, the number of designated areas recorded increase from 67 in 1990 to 86 areas in 2015, most of which – 67 areas – belong to natural monuments, followed by nature park with 12 areas.

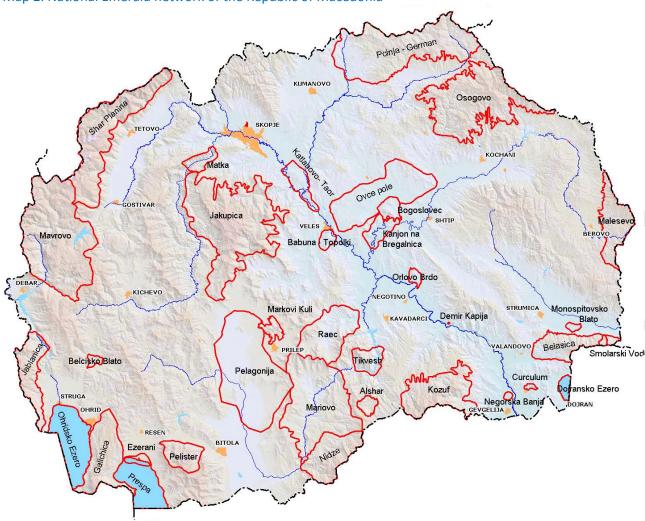
Thus, currently the designated area network comprises 86 areas, with total area of 229.900 ha or 8.94 % of the territory of Macedonia.

Most of it falls into the category national parks with around $\frac{4.47}{6}$ %, then natural monuments with $\frac{3.07}{6}$ % and the multipurpose area Jasen with $\frac{0.97}{6}$ % of the national territory.

¹ The analysis of the number and area of designated areas, i.e. the rendering of the borders in GIS has been done during 2010-2011, within the UNDP and GEF project "Strenghtening the environmental, institutional and financial sustainability of the system of designated areas in the Republic of Macedonia ".

Заштитени подрачја во постојни граници

Map 1. National designated areas


2. Designated areas with internationally recognized status

- Monument of Nature "Ohrid Lake" World Natural Heritage (UNESCO);
- Monument of Nature "Prespa Lake" Ramsar Site (1995);
- Monument of Nature "Dojran Lake" Ramsar Site (2008);
- Monument of Nature "Markovi Kuli" (King Marko's Towers) World Natural Heritage (UNESCO's Tentative List); and
- Monument of Nature "Slatinski izvor" (The Springs of Slatino) World Natural Heritage (UNESCO's Tentative List).
- Biosphere Ohrid-Prespa Reserve World Natural Heritage (UNESCO) (2014).

3. Emerald network

4 phase process was implemented in the Republic of Macedonia from 2002 to 2008 to identify the areas of special conservation interest (ASCI) and establish the Emerald Network. This network is established on the territory of the countries Parties to the Bern Convention and important part in the preparation of candidate countries for EU membership for the implementation of the EU Birds and/or Habitats Directives, or an additional tool in the process of establishing the coherent European Environmental Network Natura 2000.

35 locations have been identified in the National Emerald network. Under the first project, implemented in 2002-2003, 3 areas have been identified: SNR Ezerani, NP Galicica and SR Dojran Lake, with a total area of 27.660 ha (3,6%). In 2004 a second project was implemented, identifying another 3 areas: SNR Tikves, NP Pelister, SR Demir Kapija, with a total area of 28.000 ha (3,8%). Under the third project implemented in 2005-2006, ten areas with a total area of 144.783 ha (19,1%) were identified, while with the fourth project (implemented in 2008), another 19 areas were identified with a total area of 556.447 ha (73,5%). The National Emerald Network of the Republic of Macedonia identifies 35 areas covering and area of 752.223 ha or around 29 % of its territory.

Map 2. National Emerald network of the Republic of Macedonia

Methodology

Methodology for the indicator calculation

The procedure for identification and designation of different categories of protected areas derives from the Law on Nature Protection, EU Directives and provisions of multilateral agreements.

Policy relevance of the indicator

List of relevant policy documents

Spatial Plan of the Republic of Macedonia

The Second National Environmental Action Plan, in its Chapter on Nature, emphasizes the goal of the establishment of integrated system for nature and biological diversity protection, in line with the EU standards and multilateral agreements, through the measure for application of mechanisms for further implementation of the National Strategy for Biological Diversity Protection with Action Plan and the National Capacity Self-Assessment (NCSA), the Law on Nature Protection and creation of appropriate conditions for Natura 2000 network establishment.

Draft National Strategy for Biological Diversity with Action Plan has been prepared for the period 2014 to 2020 and its adoption by the Government of the Republic of Macedonia is in process.

Legal grounds

The Law on Nature Protection provides for introduction of a system of designated areas aimed at protecting biological diversity in natural environments, natural processes, as well as abiotic characteristics and biological diversity of the area. The Law adopts new categorization of the designated areas which is in accordance with the International Union for Conservation of Nature (IUCN) model, establishing 6 categories of protected natural heritage. The law stipulates a responsibility that, within 6 years, all designated areas (nominated before 2004) to be re-evaluated and designated according with the new categorization. These areas are foreseen with the Spatial Plan of the Republic of Macedonia for the period until 2020.

Targets

Expansion of the network of national designated areas up to around 12% in relation to the territory of the Republic of Macedonia is foreseen under the Spatial Plan of the Republic of Macedonia, the Spatial Plans of the Regions and the National Strategy for Biological Diversity Protection

The 35 areas identified by the National Emerald network will be used to form the Natura 2000 network; therefore it is necessary to strengthen the capacities at national and local level to start the process of identification of all areas in accordance with Natura 2000 and the EU Birds and Habitats Directive.

Reporting obligation

- Annually, to the European Environmental Agency
- Annually, to the Secretariat of the Bern Convention with the Council of Europe

General metadata

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 008	Designated areas	CSI 008	Designated areas	R	А	Biological diversitynaturepolicies	Annually

MK – NI 009

SPECIES DIVERSITY

Definition

The indicator will show the trend in the number and distribution of selected species or species groups at national level, as relative assessment compared to the baseline year of the monitoring commencement.

At the moment, species groups considered are the birds.

The indicator will show the trend of common birds species (developing) and the trend of certain selected species of birds of prey.

Units

Number of species, estimated number of individuals for certain species.

Policy relevance of the indicator

List of relevant policy documents

The Second National Environmental Action Plan, in its Chapter on Nature, emphasizes the goal of the establishment of integrated system for nature and biological diversity protection, in line with the EU standards and multilateral agreements. One of the actions envisaged for the goal achievement is development of national monitoring programme for biological diversity components and elaboration of national biodiversity indicators.

The National Strategy for Biological Diversity Protection with Action Plan defines integrated approach to the protection and sustainable use of components of biological diversity. The Action Plan outlines the specific actions to be taken to achieve the goals. The strategic commitment "Research and monitoring" includes action for national biodiversity indicators development. (D.1.11).

Legal grounds

The Law on Nature Protection provides for organization of monitoring of nature state. The monitoring methodology needs to be specified in a regulation. The monitoring over the state of nature is carried out through: measurement, observation, assessment and control of the state of species, their habitats, habitat types, environmentally important areas, ecosystems, landscape types, monitoring and assessment of geological values and monitoring of the state of natural heritage.

Targets

Identification of the trend in populations for selected bird species and establishment of the reasons leading to reduction in their number and development and implementation of measures for the negative trend halting (contribution to the achievement of the Target 2020 for biodiversity loss prevention/reduction by 2020).

Key policy issue

What is the trend in the populations of selected bird species and what are the reasons leading to their number reduction?

Key message

According to available data, there is a trend of populations number reduction.

Figure 1. Trend in the number of Griffon Vulture in Macedonia (by colonies)

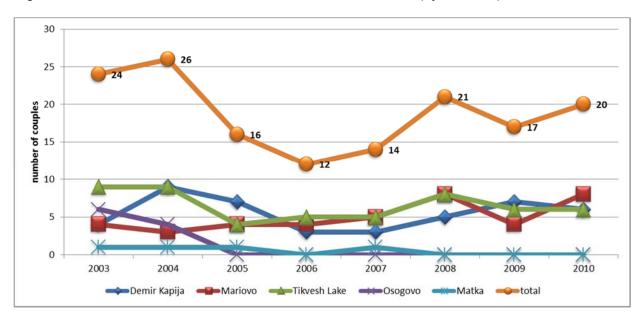
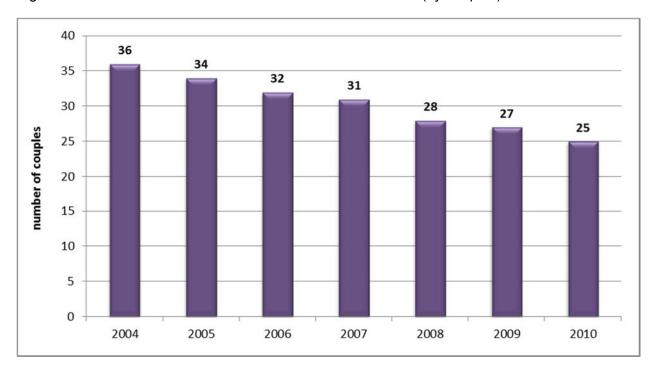



Figure 2. Trend in the number of Griffon Vulture in Macedonia (by couples)

Assessment

Abundance and variety of species and ecosystems are the main features of biological diversity in the Republic of Macedonia. According to the available information, this wealth comprises the imposing number of 17.604 species, out of which 976 are endemic species. According to the analysis of the richness of biodiversity in the countries of the European continent, the Republic of Macedonia is positioned at the very top of the list of states known as "European Hotspot".

Ornitofauna of the Republic of Macedonia is represented by 338 taxa (309 species and 19 subspecies) of birds.

66 bird species found in the Republic of Macedonia have been included in the European Red List. From among "Emerald" species identified in the Republic of Macedonia (under the Resolution No. 6 of the Bern Convention), 115 species are birds.

In the period from January 2003 until October 2010, within the Project for vultures conservation, monitoring of the populations of two species of birds of prey, namely Griffon Vulture and Egyptian Vulture has been carried out, accompanied also by monitoring of the Imperial Eagle (there is also older data on the said species, as well as on the Golden Eagle, Mediterranean Falcon and long-legged buzzard; however, this data should be updated and analyzed again).

The implementation of the Project for common bird species monitoring was initiated in 2007 and data on the trend in certain indicative bird species has been obtained in the course of the past four years.

Methodology

Methodology for indicator calculation

Sampling quadrants (10 - 15) with an area of 1 km² are taken by random and common bird species were counted there by the method of linear transect. Counting took place in the period of nesting (from 15 April to 15 June) with the intensity of two searches per year. Data was statistically processed resulting in the established trend in the populations of species at national level.

With reference to birds of prey, full census of couples in nest and determination of their success in nest have been envisaged.

Source of used methodology

We applied methodology used by the organization British Trust for Ornithology in carrying out the census of birds in nests on the territory of the United Kingdom.

Indicator: Number of vulture couples

The indicator shows the estimate of the size of populations (in couples) of Griffon Vulture and Egyptian Vulture in Macedonia, based on detailed monitoring of nesting sites of the two species on the whole territory of Macedonia.

Data specification

Title of the indicator	Source	Reporting obligation
Species diversity	 Grubac, B. & VELEVSKI, M. (2004-2010): Survey and monitoring of the status, breeding success and threats to the Egyptian Vulture in Macedonia-Report to BVCF/FZS. Grubac B., Velevski M., Lisicanec T., Lisicanec E., Rolevski, D.&Andevski, J. (2007): Decrease of population size of the Griffon vulture <i>Gypsfulvus</i> in Macedonia and assessment of conservation measures. III Congress of Ecologists of Republic of Macedonia, 06-09.10.2007, Struga. Abstract Book, 101-102. Macedonian Ecological Society. Macedonian Ecological Society and Wild Flora and Fauna Fund. 	. V

Data coverage:

Table 1. Trend in the number of Griffon Vulture in Macedonia (by colonies)

	Griffon Vulture - couples											
	Demir Kapija	Mariovo	Tikvesh Lake	Osogovo	Matka	total						
2003	4	4	9	6	1	24						
2004	9	3	9	4	1	26						
2005	7	4	4	0	1	16						
2006	3	4	5	0	0	12						
2007	3	5	5	0	1	14						
2008	5	8	8	0	0	21						
2009	7	4	6	0	0	17						
2010	6	8	6	0	0	20						

Table 2. Trend in the number of Egyptian Vulture in Macedonia (in couples)

Egyptian Vulture							
year	couples						
2004	36						
2005	34						
2006	32						
2007	31						
2008	28						
2009	27						
2010	25						

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 009	Species diversity	CSI 009	Species diversity	s		Biological diversity	

MK – NI 052 FORESTS AND OTHER WOODED LAND

Definition

The indicator shows the overall forest and other wooded land area, the share of this area in country area, as well as share of forest landscapes naturally recovered and planted forests, share of production forest area and forests intended for soil, water, ecosystem and biodiversity protection.

The term *forest* means forest ecosystem on wooded land grown over with forest tree species and shrubs, bareland adjacent to forest, as well as other barelands and meadows within forest, forest nurseries, forest roads, seeds plantations, fire prevention passes in forest, wind protection belts on areas exceeding two ares in size, as well as forest within protected areas.

Wooded land is land under forest or which due to its natural properties is the most suitable for forest production, as well as land with facilities intended for forest production.

Production forests are primarily intended for permanent production of wood assortments and other wood products and services.

Forests within protected areas are designated under the Law on Nature Protection.

Units

- km², ha and %.

Key policy issue

What is the trend of overall forest and other woodland area?

Key message

The share of overall forest and other wooded land area in overall country area ranges between 35.5% and 38.8%; forest area was the largest in 2001, and the smallest in 1990. In 2013, there was decline in the overall forest area by 0.98% compared to 2001 when the forest area was the largest.

With regard to share of wooded land areas in country area, data is available only for the period 2010 to 2014 and ranges between 3.8% and 5.6%, reflecting increase by 47.4%.

The share of planted forest area has variable trend of decrease and increase in area.

Figure 1. Share of forests and other wooded land in country area

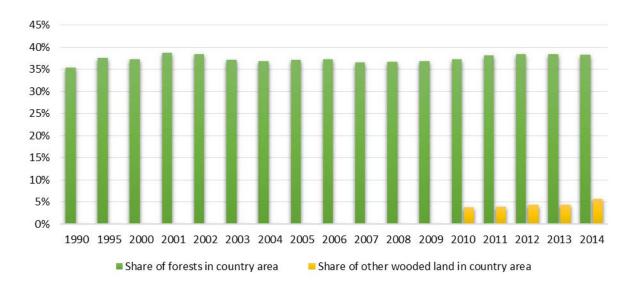
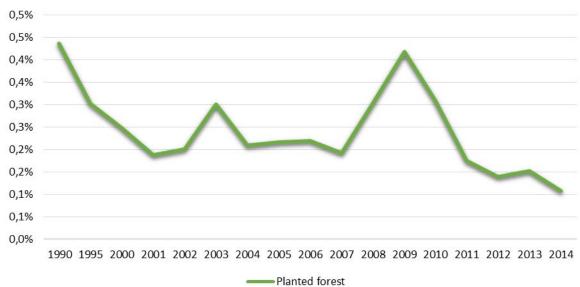



Figure 2. Share of planted forest in country area

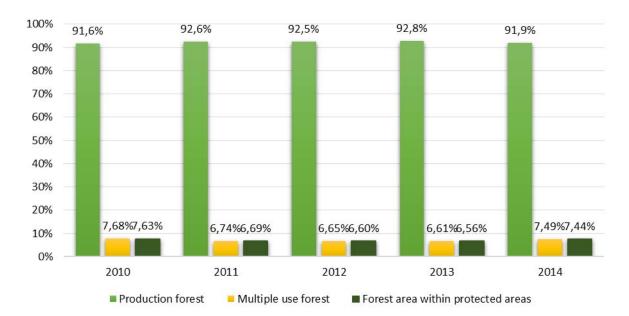


Figure 3. Share of production, multiple use forest and forest area within protected areas in country area

Data coverage: **excel**

Source of data: State Statistical Office

Assessment

Besides production, forests also have role of nature protection through protection of biodiversity and protection against erosion. They are of great importance for sustainable development owing to influence they make on climate, water regime, oxygen production and quality of environment.

During the reporting period, the share of overall forest and other wooded land area in country area ranges between 35.5% and 38.8%; forest area was the largest in 2001, and the smallest in 1990. In 2014, there was decline in the overall forest area by 0.98% compared to 2001 when the forest area was the largest. Slight decline by 0.13% was recorded in forest area in 2013 compared to 2012 due to forest fires.

With regard to share of wooded land areas in country area, data is available only for the period 2010 to 2014 and ranges between 3.8% and 5.6%, reflecting increase by 47.4%.

The share of planted forest area has variable trend of decrease and increase in area. Significant decline by 52.8% was recorded in the period 1990 to 2001, followed by increase of 53.2% by 2003, and then decrease again of 37.3% by 2007. The greatest increase was recorded from 2007 to 2009 reaching 120.23%, to be followed by the greatest declin of 73.2% by 2014.

The share of production forests in total forest area, in the period 2010 to 2014 recorded increase by 0.33%; the share of multiuse forests noted decline by 2.47%, and the share of forest areas within protected areas noted drop by 2.49% in total forest area.

Methodology

Methodology for the indicator calculation

Parameters are obtained from reporting units delivered with regular statistical reports, book-keeping records, based on specific forest management plans.

Policy relevance of the indicator

Legal grounds

- Law on Nature Protection (Official Gazette of RM no. 67/04, 14/06, 84/07, 35/10, 47/11, 148/11, 52/12, 13/13, 163/13 and 41/14)
- Law on Forests (Official Gazette of RM no.64/09, 24/11, 53/11, 25/13, 79/13, 147/13, 43/14 and 160/14)
- Law on State Statistics (Official Gazette of RM no.54/97, 21/07, 51/11, 104/13, 42/14 and 192/15) and Programme for statistical survey for the period 2013-2017 (Official Gazette of RM no.20/13, 24/14, 13/15 and 07/16)

Targets

The Spatial Plan of the Republic of Macedonia specifies enlargement of forest and wooded land areas, namely by 2020 the share in country area should be 48.8%.

Reporting obligation

- UNECE/FAO
- FOREST EUROPE Report on "State of Forests and Sustainable Forest Management in Europe"
- FAO Global Forest Resources Assessments (FRA)

Code	Title of the indicator	Compliance with CSI/ EEA or other indicators		Classification by DPSIR	Typ e	Linkage with area	Frequency of publication
MK NI 052	Forests and wooded land			S	Α	Biodiversity	Annually

MK - NI 010

GREENHOUSE GAS EMISSIONS

Definition

The indicator shows the quantities of greenhouse gas emissions into atmosphere on national level. The emissions are presented by greenhouse gas type. The indicator provides information on emissions in the following sectors: energy, industrial processes and products use, land use and land use change and forestry (LULUCF) and waste.

Units

■ Kilotons CO₂-equivalent

Key message

Total emissions throughout the inventory taking period have undergone slight growth from 0.4% compared to 1990. Total national emissions in 2012 amounted 12223.37 Gg of CO2-eq. The five biggest categories with highest sources of emissions in Macedonia are as follows:

- Emissions of CO₂ from energy industries (coal, lignite) (49.5%);
- Emissions of CH₄ from solid waste landfills (11.7%);
- Emissions of CO₂ from mobile sources, including road motor vehicles (11.6%);
- Production and construction industries (8.8%); and
- Emissions of CH₄ from enteric fermentation of livestock (3.9%).

Figure 1. Total GHG emission in kilotons CO2-equivalent (baseline 2000)

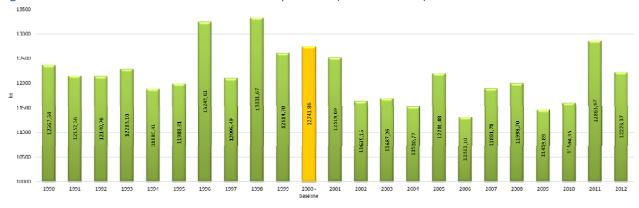


Figure 2. Share by sector of GHG emissions in kilotons per year

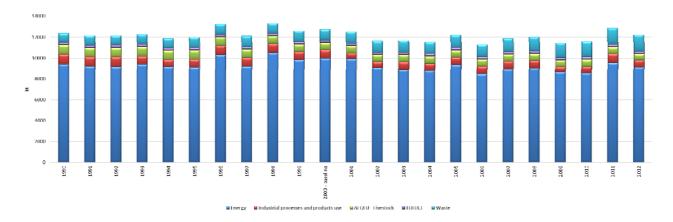
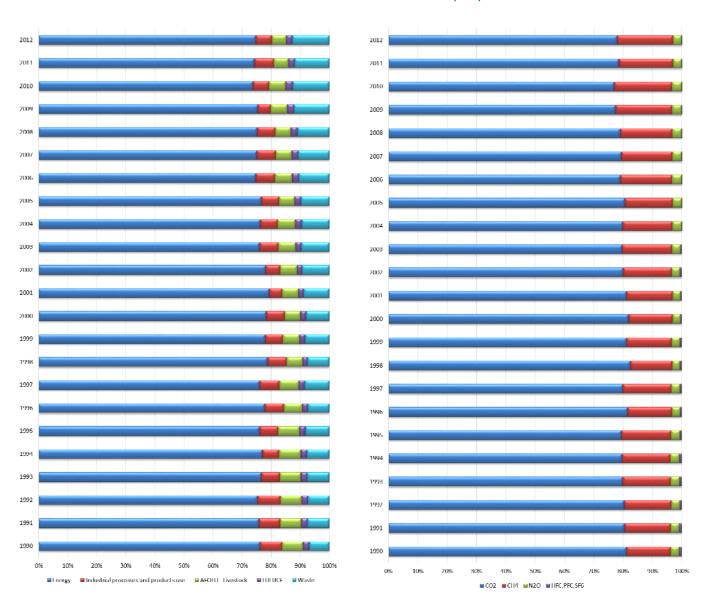



Figure 3. Share by sector of GHG emissions in % per year

Figure 4. Share of individual pollutants in the total GHG emissions in % per year

Data coverage: **excel**

Source: Macedonia's Third National Communication to UN Framework Convention on Climate Change (UNFCCC), Ministry of Environment and Physical Planning, www.unfccc.org.mk

Assessment

In general, energy sector has the greatest contribution to national GHG emissions, with an average share of 77% in the period 1990 - 2012. Waste sector was the second sector contributor with an average share of 9%, followed by agriculture, forestry and land use with an average share of 8%. Industrial processes were the last sector contributor with an average share of 6% in the national GHG emissions in the period 1990-2012.

With regard to the assessment of key sources by sub-categories, sub-sector energy industries was the predominant source of emissions throughout the period, with an average share of 50.2% in 1990 and 49.5% in 2012.

Sub-sector production and construction industries was the second national contributor of emissions in 1990 with an average share of 13.6%. In the last year of the inventory, 2012, this sector was responsible for 8.82% GHG emissions and was therefore regarded the fourth contributor. Thus, emissions from the subsector of production noted falling trend owing to reduced industrial activity in the country, partially explained by closure of industrial plants for aluminum, lead and zinc in 2003.

Contrary to the above, emissions from the sub-sector road transport experienced significant increase of their contribution to overall national emissions in the period 1990 - 2012; the average share of emissions from this sub-sector in 1990 was 6.2% of the overall national emissions or 760.85 Gg of CO2-eq., while in 2012 this sub-sector was responsible for 11.6% of the overall national emissions or 1415.14 Gg of CO2-eq.

Similarly to this, emissions from the sub-sector of waste disposal increased significantly in the period 1990 - 2012 due to population growth which caused greater consumption and waste generation.

Emissions in the category of land use and land use change and forestry remained relatively unchanged, except in 2007, 2008 and 2012 when carbon sinks were significantly reduced because of great forest fires. The greatest portion of CH₄ emissions in agricultural sector (89%) was caused by enteric livestock fermentation and these emissions decreased constantly in parallel with the reduction of livestock scale. Emissions from manure amounted 8% of GHG emissions, while other emissions came from rice fields and burning of plant residues.

Methodology

Methodology for the indicator calculation

To calculate GHG emissions as well as GHG inventories, the methodology provided by UNFCCC/IPCC is used.

Methodology is based on the calculation of GHGs as a product from the rate of activity for individual sectors and emission factors.

In the frames of the Third Communication on Climate Change, GHGs inventory has been prepared. Identification of the key categories of sources relied on methods Tier 1 and Tier 2. Tier 1 method is used to identify categorization of key sector and establishment of the trend in emissions from the national emission inventories. Given the fact that the inventory has data for several years, estimates of shares of each category in emission level and trends were made.

Tier 1 level is also applied for certain categories of sources, by using analysis of uncertainty. Application of Tier 1 method is useful, as it enables additional identification of the reasons for which certain categories of emission are key and enables prioritization of activities in order to improve the quality of inventory and reduce overall uncertainty.

Policy relevance

The Grenhouse Gases Inventory establishes the basis for the analysis of the GHG reduction.

Legal grounds

Republic of Macedonia is a Party to the United Nations Framework Convention on Climate Change and to the Kyoto Protocol. Climate change issues have been incorporated in the Law on Environment, including the requirements for preparation of GHG emission inventories and GHG removal via sinks, as well as development of action plan with measures and activities aimed at GHG emissions abatement and climate change impacts mitigation. In addition to this, by means of amendment of the Law on Environment, provision has been made for Designated National Authority to approve the projects under the Kyoto Protocol Clean Development Mechanism.

Reporting obligation

UNFCCC

Code	Title of the indicator		e with CSI/EEA er indicators	Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 010	Greenhouse gases emissions and removals	CSI 010	Greenhouse gases emissions and removals	P	В	airair qualityclimatechange	Annually

MK - NI 011

PROJECTIONS OF GREENHOUSE GAS EMISSIONS

Definition

The indicator illustrates projected trends in anthropogenic greenhouse gas (GHG) emissions by means of application of the existing policies and measures and/or additional policies and measures. Projected trends are presented by sector types: energy, industrial processes, agriculture, land use change and forestry and waste.

Units

Tons CO₂-equivalent.

Key message

According to specific emissions (kt CO₂-eq per capita), Macedonia remains among countries with relatively high emissions per capita, mainly due to the use of fossil fuels in electricity production. Compared to the baseline scenario, this parameter notes gradual decline along with the introduction of gas in mitigation scenarios. Considering the close interaction between GHG emissions and the manner of energy production and consumption, the national policy for energy efficiency (EE) and renewable energy sources (RES) will by itself contribute to the climate change mitigation, as achievement of the objectives set in these policies will at the same time reduce the GHG emissions.

Figure 1: Projections of total GHG emissions [κt CO2-eq]- Baseline scenario

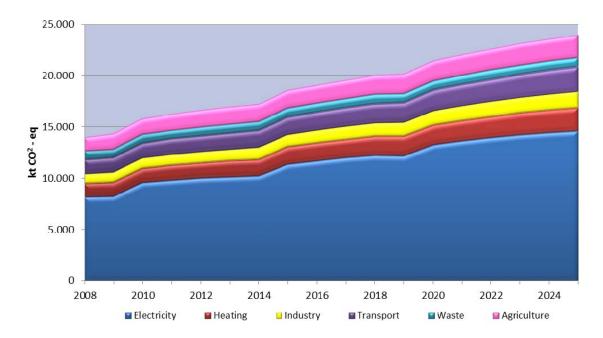


Figure 2: Projections of total GHG emissions [kt CO2-eq]- First mitigation scenario

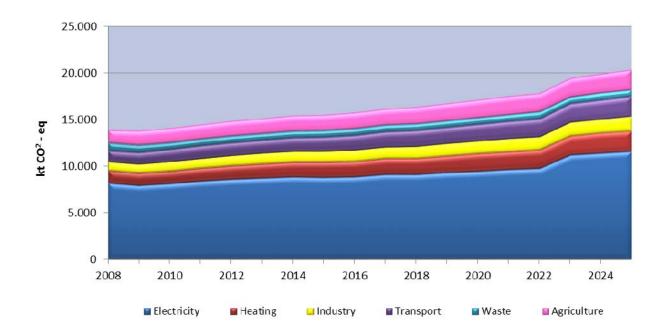


Figure 3: Projections of total GHG emissions [kt CO2-eq]- Second mitigation scenario

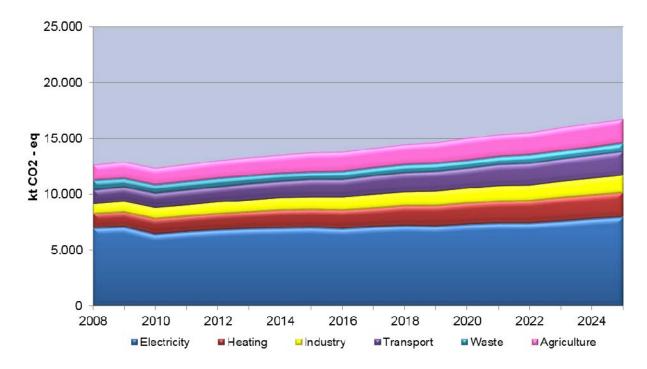


Figure 4: Effectiveness of the three scenarios expressed as absolute emissions growth in 2025 relative to emissions in 2008

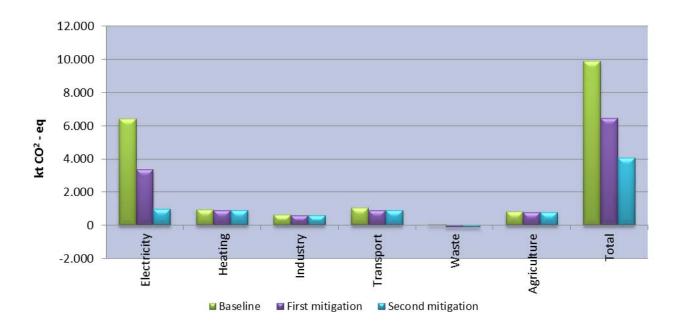
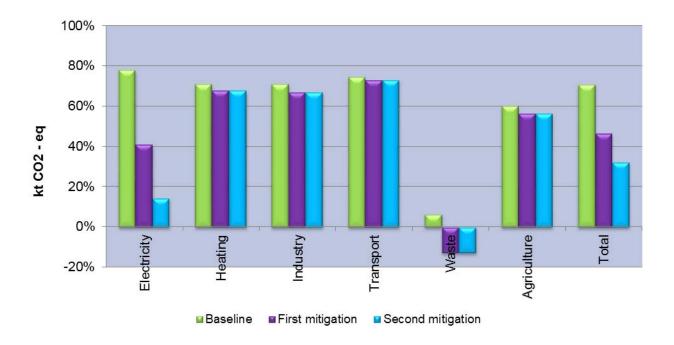



Figure 5: Effectiveness of the three scenarios expressed as relative emissions growth in 2025 relative to emissions in 2008

25.000 20.000 15.000 kt CO2. 10.000 5.000 0 2008 2010 2012 2014 2016 2018 2020 2022 2024 Baseline First mitigation Second mitigation

Figure 6: Projections of total GHG emissions for the three scenarios [kt CO2-eq]

Data coverage: **excel**

Source: First National Communication on Climate Change to UNFCCC, MEPP, UNDP, p. 47-84, 2003, Second National Communication on Climate Change to UNFCCC, MEPP, www.unfccc.org.mk

Assessment

This Chapter integrates sectoral emissions in order to project total GHG emissions for the period 2008 - 2025 based on adopted scenarios: baseline, first and second mitigation scenarios. It should be noted that the first and the second mitigations scenarios differ only in electric power sector, where the second mitigation scenario includes additional measures for emission abatement, which will, as shown below, contribute significantly to the overall emission abatement. Total emissions at the beginning and at the end of the period by all scenarios are summarized on Table 1. Further on, Table 2 (and Figure 1), Table 3 (and Figure 2) and Table 4 (and Figure 3) present sectoral and total GHG emissions by years, for each scenario, respectively.

Analysis of the baseline scenario: According to projections presented in Table 2 and on Figure 1, there will be significant increase of GHG emissions by 2025 compared to values estimated for 2008 (around 9.900 kt CO₂-eq in absolute value, or around 71% in relative terms), provided that business-as-usual is preserved (Figure 4 and Figure 5, the last group of columns). This increase is mainly connected to the growth in electric power sector (absolute difference of 6.400 kt CO₂-eq and 78% relative growth of the value in 2008), which reflects the so called dark scenario, i.e. development scenario of the national energy sector based on lignite (Figure 4 and Figure 5, first group of columns). Other sectors also show significant growth in GHG emissions, so that values in 2025 compared to values in 2008 are higher by 75% - transport, 71% - heating and industry, 60% - agriculture and 6% - waste (Figure 4 and Figure 5).

Analysis of scenarios of emission abatement: The state could improve if development paths include activities/measures leading to GHG emissions reduction. As a result, the first mitigation scenario (as defined in the analysis by sectors) will lead to increase in total emissions of 46% of the values in 2025 compared to the value in 2008 or absolute difference of around 6.400 kt CO₂-eq. (Table 3 and Figure 2; also Figure 4 and Figure 5, last group of columns). This increase in total emissions decreases further by 32% (absolute difference of around 4.000 kt CO₂-eq) if development paths observe the second mitigation scenario (Table 4 and Figure 3; also Figure 4 and Figure 5, last group of columns).

With regard to emission projections by sectors for the three scenarios, comparison of emissions in 2025 with those in 2008 shows highest rise of emissions in electric energy sector. Namely, the relative increase of 78% in the baseline scenario falls at 41% in the first mitigation scenario due to the introduction of two plants on natural gas for combined electricity and heat production (the first one in 2009 and the second in 2015). The relative increase drops at 14% under the second mitigation scenario, as a result of reduced consumption by major consumers, introduction of renewable energy sources and termination of the thermal power plant (TPP) in Negotino upon the establishment of the new gas power plant (Figure 4 and Figure 5, last group of columns). As far as the sectors are concerned, there is a notable result in the waste sector, where the relative increase of 6% in the baseline scenario reaches negative relative increase (-13%) under both mitigation scenarios. This means that, under the mitigation scenario, the values of emissions in 2025 will be by 13 % lower compared to their values in 2008 (Figure 4 and Figure 5, fifth group of columns), owing to the introduction of technology for landfill gas combustion at several landfills in the country. Other sectors note minor contribution to the reduction of overall emissions, considering the fact that the relative difference between baseline and mitigation scenarios ranges within 2 - 4%. (Figure 5).

Summary of the projections of total GHG emissions by years, in line with the adopted scenarios, is presented in Table 5 and on Figure 6.

According to its country specific emissions (kt CO_2 -eq/capita), Macedonia remains among countries with relatively high emissions per capita, owing mainly to the use of fossil fuels in electricity production. Compared to the baseline scenario, this parameter notes gradual decrease with the introduction of gas under mitigation scenarios. The calculated specific emissions for the three scenarios are presented in Table 6.

Methotodolgy

Methodology for the indicator calculation

The electric energy production sector (which contributes more than 50% to the total GHG emissions) has been modeled by application of the WASP software (a tool used in the energy sector development planning), while emissions estimates for other sectors have been made by using the software tool GACMO and expert judgments. Projections of GHG emissions have been made by downscaling analysis made under the national reports.

Policy relevance

This indicator is of vital importance for the national climate change mitigation policy. It is also related to future implementation of projects based on the Clean Development Mechanism (CDM) of the Kyoto Protocol.

Legal grounds

Republic of Macedonia is a Party to the United Nations Framework Convention on Climate Change and to the Kyoto Protocol. Climate change issues have been incorporated in the Law on Environment, including the requirements for preparation of GHG emission inventories and GHG removal via sinks, as well as development of action plan with measures and activities aimed at GHG emissions abatement and climate change impacts mitigation. In addition to this, by means of amendment of the Law on Environment, provision has been made for Designated National Authority (DNA) to approve the projects under the Clean Development Mechanism (CDM) of the Kyoto Protocol.

Reporting obligation

UNFCCC

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 011	Projections of GHG emissions	CSI 011	Projections of GHG emissions and removals	P	А	airair qualityclimatechange	Annually

MK - NI 012

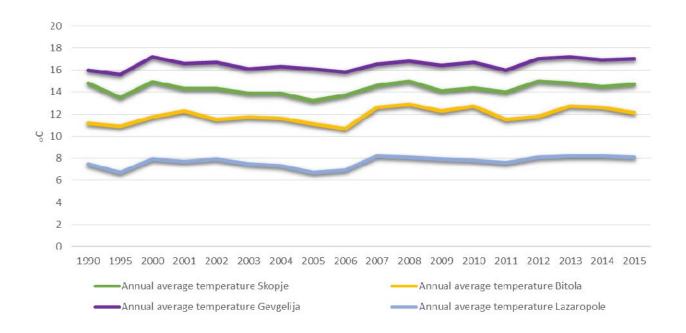
AIR TEMPERATURE

Definition

The indicator shows the annual average temperature of the air, its development over a given period of time, and deviations from a long-term average in the country as a whole and in particular regions.

Units

Degrees Celsius (°C)


Key question

What is the trend in annual temperature and average annual deviation from the long-term average temperature?

Key message

During the reporting period, increase in annual average temperature of the air was recorded in all four observed populated places. The average annual deviations from the long-term average temperature in the period 1961 to 1990 ranged between 0.4 and 1.8°C for Bitola , between 0.5 and 2.1°C for Gevgelija and between 0.1 and 1.4°C for Lazaropole. In Skopje, annual deviations from long-term average temperature in the period 1981 - 1990 ranged between 0.5 and 1.3°C.

Figure 1. Trend in annual temperature at the selected monitoring stations

2,5
2
1,5
0,5
1
1990 1995 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

— Average annual deviation from the long-term average temperature Skopje
— Average annual deviation from the long-term average temperature Bitola
— Average annual deviation from the long-term average temperature Gevgelija
— Average annual deviation from the long-term average temperature Gevgelija
— Average annual deviation from the long-term average temperature Gevgelija

Figure 2. Average annual deviation from the long-term average temperature at the selected monitoring stations

Data coverage: **excel**

Source: Hydrometeorological Administration

Assessment

The indicator takes into account data on long-term average air temperature in the period 1961 to 1990 for Bitola, the second major city, Gevgelija, place with the highest and Lazaropole with the lowest long-term average temperature. For Skopje, the long-term average air temperature was taken for the period 1981 to 1990.

In Skopje, the average air temperature in 2015 recorded decrease by 0.1°C compared to 1990, and the warmest years with average annual air temperature of 15°C were 2008 and 2012. The greatest deviations from long-term average air temperature in the period 1981 to 1990 were also recorded in these two years with 1.3°C.

In Bitola, the average air temperature in 2015 increased by 0.9°C compared to 1990, and the warmest year with average annual air temperature of 12.9°C was 2008. The greatest deviations from long-term average air temperature in the period 1961 to 1990 was also recorded in this year with 1.8°C.

In Gevgelija, the average air temperature in 2015 increased by 1°C compared to 1990, and the warmest years with average annual air temperature of 17.2°C were 2000 and 2013. The greatest deviations from long-term average air temperature in the period 1961 to 1990 was also recorded in these two years amounting 2.1°C.

In Lazaropole, the average air temperature in 2015 increased by 0.6°C compared to 1990, and the warmest years with average annual air temperature of 17.2°C were 2007, 2013 and 2014. The greatest deviations from long-term average air temperature in the period 1961 to 1990 was also recorded in these three years amounting 1.4°C.

Annual average deviations from long-term average air temperature in the period 1961 - 1990 in all observed populated places ranged between -0.5 and 2.1 °C.

Methodology

Methodology for the indicator calculation

Air temperature means temperature of ambient air measured in the shade (inside meteorological house) at a height of 2 meters. It is measured by standard glass thermometer (mercury or alcohol) and electronic sensor. The main parameters of air temperature for a given location are: daily average temperature, maximum daily and minimum daily temperature.

Daily average temperature is obtained by air temperatures measured at 07, 14 and 21 hours (local time) using the formula: Tayg = (T7+T14+2*T21)/4

Maximum daily temperature is the highest temperature of the air between 21 hours (local time) preceding and 21 o'clock (local time) current day.

Minimum daily temperature is the lowest temperature of the air between 21 hours (local time) preceding and 21 o'clock (local time) current day.

Processing of collected data includes calculation of average temperatures for a given period and/or finding the maximum and the minimum values.

In the past, meteorological measurements in Skopje were characterized by frequent changes in location. The first meteorological measurements date back in 1924 (rainfall measuring station) and measurements as climatological stations started in 1944 in old Aerodrom (present location at Jane Sandanski Boulevard) and then the station was dislocated at the then airport Petrovec and now Alexander the Great. Meteorological station at Zajchev Rid was established in 1978 and has been operating with permanent measurements of meteorological elements and phenomena since then.

According to the surveys carried out in the sector for meteorology so far and results obtained, the Main meteorological station Skopje is more representative for Skopje Valley and wider urban area of the City of Skopje than the station at Alexander the Great airport the main purpose of which are the meteorological measurements for the aviation.

For the above reasons, we propose data from Skopje (Zajchev Rid) as the most relevant coming from a modern meteorological observatory. Based on the aforementioned, the long-term average air temperature for the City of Skopje was taken for the period 1981 to 1990.

Policy relevance

Legal grounds

Law on Hydrometeorological Activity (Official Gazette of RM no.103/08, 53/11 and 51/15).

Target

In its climate policy, the European Union proposed that the global average temperature increase should be limited to not more than 2°C above pre-industrial levels

Reporting obligation

World Meteorological Organization

Code	Title of the indicator		e with CSI/EEA r indicators	Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 012	Air temperature	CSI 012 CLIM 001	Global and European temperature	s	В	airair qualityclimatechange	Annually

*MK - NI 051*ATMOSPHERIC PRECIPITATIONS

Definition

Indicator shows annual precipitations or the overall quantity of wet deposit fallen on a given area for a given period of time, in liquid or solid state and deviations from long-term average precipitations on the whole national territory or in certain parts.

Units

millimeters (mm), percentage %, litre per square meter

Key policy issue

What is the trend in precipitations?

Key message

During the reporting period, variable trend was recorded in all four populated places. The annual average deviations from long-term average precipitations in the period 1961 - 1990 ranged between 63% and 143% for Bitola, between 62% and 169% for Shtip and between 72% and 124% for Lazaropole. In Skopje, annual average deviations from long-term average precipitations in the period 1981 to 1990 ranged between 67% and 176%..

Diagram 1. Trend in precipitations in selected populated places

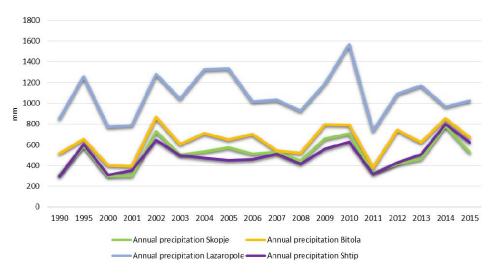
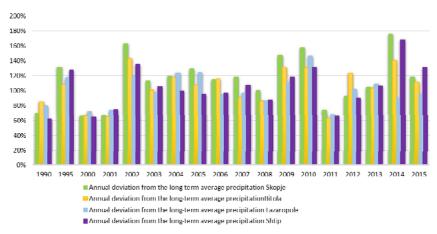



Diagram 2. Deviations from long-term average precipitations in selected populated places

Data coverage: **excel**

Source of data: Hydrometeorological Administration

Assessment

indicator takes into account data on long-term average precipitations in the period 1961 to 1990 for Bitola, the second major city, Lazaropole, place with the highest and Shtip with the lowest long-term average precipitations. For Skopje, the long-term average precipitation was taken for the period 1981 to 1990.

In Skopje, the intensity of the average precipitations in 2015 recorded increase by 71.5% compared to 1990, and the greatest intensity of the average annual precipitations of 782.9 mm was recorded in 2014. The greatest deviations from long-term average precipitations in the period 1981 to 1990 were also recorded in this year, reaching 176%.

In Bitola, the intensity of the long-term average precipitation in 2015 increased by 30.1% compared to 1990, with the greatest intensity of the average annual precipitations of 863.8 mm recorded in 2002. The greatest deviations from long-term average precipitations in the period 1961 to 1990 were also recorded in this year, reaching 143%.

In Shtip, the intensity of the long-term average precipitation in 2015 increased by 111.4% compared to 1990, with the greatest intensity of the average annual precipitations of 799.4 mm recorded in 2014. The greatest deviations from long-term average precipitations in the period 1961 to 1990 were also recorded in this year, reaching 169%.

In Lazaropole, the intensity of the long-term average precipitation in 2015 increased by 20.4% compared to 1990, with the greatest intensity of the average annual precipitations of 1330.4 mm recorded in 2005. The greatest deviations from long-term average precipitations in the period 1961 to 1990 were also recorded in this year, reaching 124%.

Annual average deviations from long-term average precipitations in all observed populated places ranged between 62% and 176%, indicating increase in the precipitations in during the reporting period, as consequence of climate change.

Methodology

Methodology for the indicator calculation

Wet precipitations are measured with: rain gauge, ombrometer (pluviometer) and precipitation sensor (with automatic meteorological stations). Instruments are positioned outdoors at 1 meter height. Rain gauge measures the overall precipitations accumulated during certain period. Time resolution can be 6 hours, 12 hours and 24 hours. In practice, daily sum of precipitations is usually operated with. Daily sum of precipitation means the quantity of wet deposit fallen during the period from 07 o'clock yesterday till 07 o'clock today.

Ombrometer is mechanical registration instrument recording the fallen quantity of wet deposit during time. Its minimum time resolution is between 1 and 10 minutes, depending on the type of the instrument.

Automatic sensor is electronic sensor. It has alternating time resolution, starting from 1 minute.

Based on daily sum of precipitation, monthly, annual and long-term average sums are calculated.

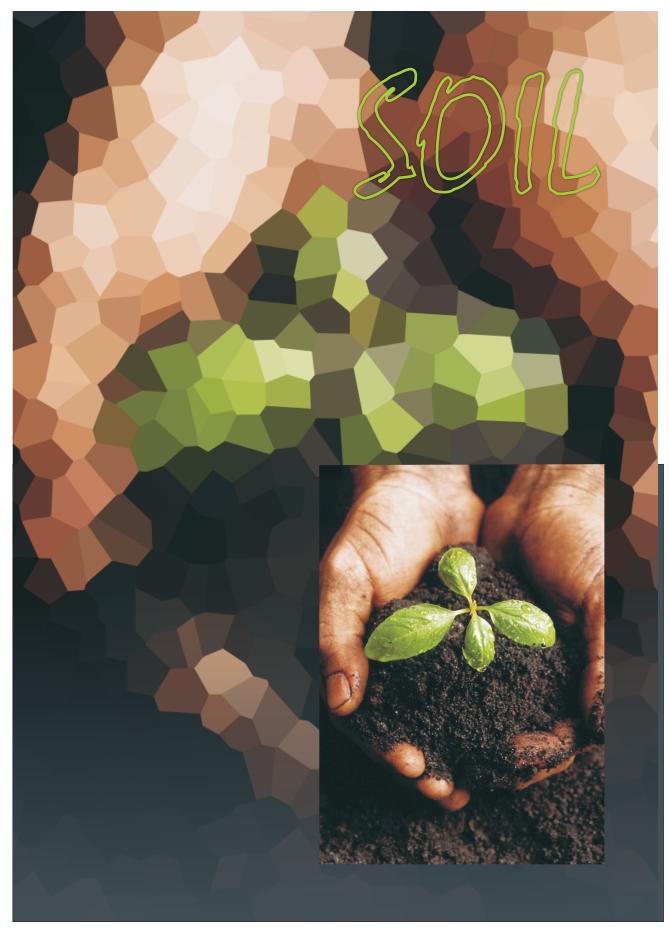
Data from ombrometer and automatic sensor enable calculation of precipitation intensity (quanity of wet deposit fallen in unit of time).

In the past, meteorological measurements in Skopje were characterized by frequent changes in location. The first meteorological measurements date back in 1924 (rainfall measuring station) and measurements as climatological stations started in 1944 in old Aerodrom (present location at Jane Sandanski Boulevard) and then the station was dislocated at the then airport Petrovec and now Alexander the Great. Meteorological station at Zajchev Rid was established in 1978 and has been operating with permanent measurements of meteorological elements and phenomena since then.

According to the surveys carried out in the sector for meteorology so far and results obtained, the Main meteorological station Skopje is more representative for Skopje Valley and wider urban area of the City of Skopje than the station at Alexander the Great airport the main purpose of which are the meteorological measurements for the aviation.

For the above reasons, we propose data from Skopje (Zajchev Rid) as the most relevant coming from a modern meteorological observatory. Based on the aforementioned, data on the long-term average precipitations for the City of Skopje was taken for the period 1981 to 1990.

Policy relevance of the indicator


Legal grounds

Law on Hydrometeorological Activity (Official Gazette of RM no.103/08, 53/11 and 51/15)

Targets

There are no targets defined

Code	Title of the indicator		e with CSI/EEA r indicators	Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 051	Precipitations	CLIM 002	Mean precipitation	ı	А	waterclimatechange	Annually

MK – NI 014 LAND TAKE

Definition

Changes in and current status of agriculture, forest and other semi-natural land taken by urban and other artificial land development. It includes areas sealed by construction and urban infrastructure as well as urban green areas and sport and leisure facilities. The main drivers of land take are grouped in processes resulting in the extension of:

- housing, services and recreation,,
- industrial and commercial sites,
- transport networks & infrastructures,
- mines, quarries and waste dumpsites.

Units

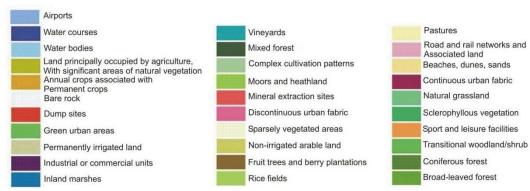
Units of measurement for changes and current status recording and mapping are hectares. For data presentation, the unit in km² can be used as well.

Results are presented as:

- current status of land cover based on the nomenclature adopted at European level, at five-year intervals;
- changes in land cover, at five-year intervals, presented in % of the total area of the country and % of the various land cover types.

Note: Particular attention is paid to areas changing as a result of urban systems extension leading to negative impact on the environment.


Key policy question


How much and in what proportions is agricultural, forest and other semi-natural and natural land being taken for urban and other artificial land development?

Key message

Based on the CORINE Land COVER methodology, the largest portion of the land in the Republic of Macedonia is under forest and semi-natural areas, covering 1. 564.488 ha or 60,5% of the total area. The category of agricultural land area covers 927.976 ha or 36.1% of the total area, the category of water bodies covers 55.856 ha or 2.2% of the total area, the category of artificial areas covers 43.000ha or 1.7% of the total area, and the smallest area of 2.000 ha or 0.1% of the total area is wetlands (Figure 1).

Map 1. CORINE Land COVER 2000 (data of 1996)

Map 2. CORINE LandCover overall changes 2006-2012

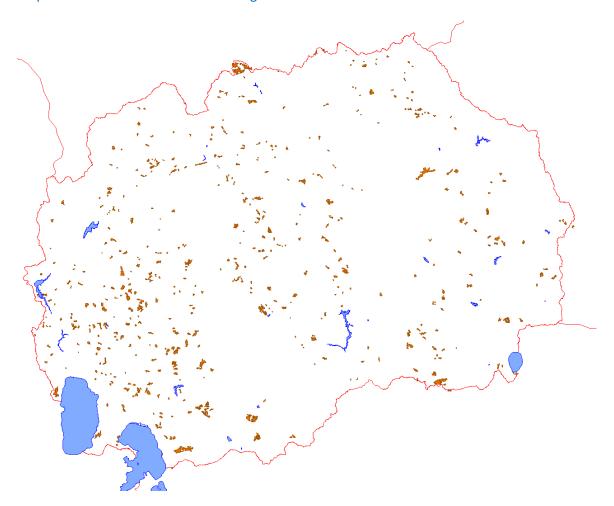


Figure 1. Area of individual areas by CORINE nomenclature and share in the total territory of the country

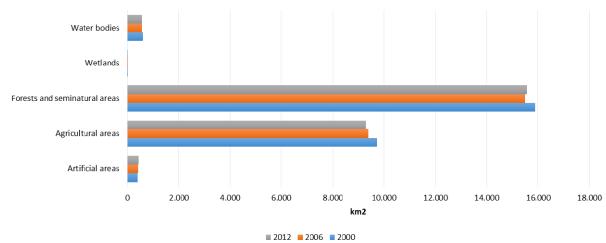


Figure 2. CORINE level 1 total changes (in hectares)

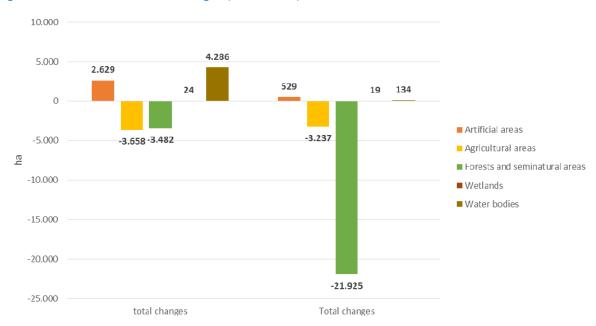


Figure 3. Relative contribution of land-cover categories to uptake by urban and other artificial land development (2006-2012)

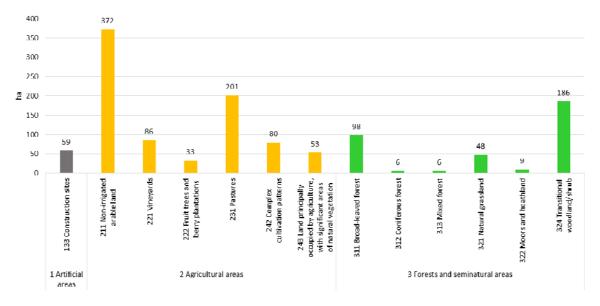
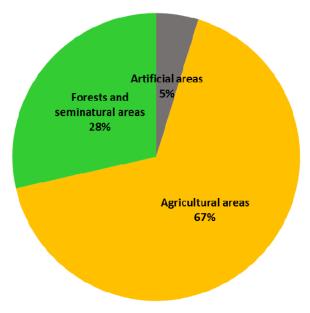



Figure 4. Relative contribution of level 1 categories transformed into urban and other artificial land development (2006-2012)

Data coverage: **exce**

Source: CORINE Land Cover

Assessment

Owing to characteristics of land cover of the territory of the Republic of Macedonia, out of 44 possible classifications under the CORINELandCoverNomenclature, 31 classifications have been identified up to the third level of the Nomenclature.

As a result of CORINELandCOVER Project, as illustrated on Figure 2, the greatest overall changes in the period 2006 to 2012, were recorded for the growth of artificial land area and reduction in agricultural land area and forest and semi-natural areas.

CORINELandCOVER changes between 2006 and 2012 cover territory of around 26.873 ha which is around 1.04% of the total territory of the country. The overall number of changes is smaller compared to the period 2000-2006 amounting 1.9% or 50.657 ha.

Concerns rising fact is that the biggest change occurs in the area of class 311 (broad-leaved forest) into class 324 (transitional woodland with shrubs) and class 323 (Sclerophyllous vegetation) covering total area of 18.171 ha or 44.57% of the total changes. This change is most probably due to wood cut and forest fires.

Opposite process of changes from class 324 (transitional woodland with shrubs) into class 311 (broad-leaved forest) concerns total area of 8.099ha or 14.13% of the total changes is due to new forest growth.

Land take on the account of expansion of residential areas and construction sites is the main reason for the increase in urban and other artificial land development cover.

In the period 2006-2012, the greatest change occurred in the class of agricultural land in favour of the growth of artificial land area amounting 67% of the total change. The greatest contribution of

30.1% occurred in the land class of non-irrigated arable land followed by the class of pastures with 16.3%.

The change in the class of forest and semi-natural areas amounted 28% of the total changes with the greatest change occurring in transitional woodland with shrubs with 15%, followed by the change in broad-leaved forest with 7.9%. These changes lead to changes in biological diversity, as they cause reduction in the habitats of high number of flora and fauna species.

Methodology

Methodology for the indicator calculation

The assessment of CORINELandCoverin 2000 and 2006 was based on data from satellite images.

Owing to characteristics of the land cover of the Republic of Macedonia, out of the possible 44 classifications, 31 were identified. In addition to this and for the same reason, the minimum spatial unit treated within the project was reduced at 20 hectares instead of 25 hectares.

The substance of the process is photo-interpretation of satellite images consisting of:

- Delineation of boundaries of areas representing unique land area units at images with "false" colours;
- Application of interpretation keys, supporting documentation and satellite/aeroplane images for marking with identification number - class in nomenclature;
- Extrapolationofthismarking and identification of all segments of the image exhibiting similar characteristics: colour, structure and composition.

TechnicalGuidelineforCORINELandCoverdevelopment was prepared by the European Environmental Agency.

Policy relevance of the indicator

Legal grounds

UndertheLawonEnvironment, every citizen is entitled to have an access to environmental state information. This indicator provides not only data on the state of the environment (land cover), but it also facilitates uniform access thereto, both at national and European levels.

BasedontheLawonLandSurveyandRegistration,

by means of regular land survey information is provided on the types of land cover.

Althoughthese parameters do not correspond with the CORINE land cover nomenclature, there is a possibility for unique integration of land cover elements.

LawonUrbanandSpatialPlanning.

Targets

Tracking the changes in land cover and mapping of current status. Changes are monitored over five-year intervals. Methodology and nomenclature have been additionally harmonized at European level, thus enabling integrated monitoring of changes at regional and European levels.

Reporting obligation

EEA

Code	Title of the indicator	Compliancewith CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MKNI 014	Land take	CSI 014	Land take	P	Α	 management nature other population soil tourism transport urbanization 	10 - annually

MK - NI 015 PROGRESS IN MANAGEMENT OF CONTAMINATED SITES

Definition

The term 'contaminated site' refers to a well-delimited area where the presence of soil contamination has been confirmed and the severity of possible impacts to ecosystems and human health are such that remediation is needed, specifically in relation to the current or planned use of the site. The remediation or clean-up of contaminated sites can result in a full elimination or in a reduction of these impacts.

The term 'potentially contaminated site' includes any site where soil contamination is suspected but not verified and further investigations need to be carried out.

The progress in the management of contaminated sites has been designed to show reduction and elimination of negative effects to ecosystems and human health where environment degradation has been confirmed.

The management of contaminated sites starts with investigation that can further lead to rehabilitation or treatment of contaminated site, measures for its conservation and maintenance and revitalization of contaminated sites.

The indicator shows progress in five main steps:

- 1) site identification/ preliminary study;
- 2) preliminary investigation;
- 3) main site investigation;
- 4) implementation of remediation measures;
- 5) measure completed.

Units

- Number of sites managed up to a certain step out of the five main steps of the indicator.
- Share of economic activities in soil contamination as percentage of sites where the activity is present compared to the total number of sites.

Key policy issue

What progress has been made in contaminated sites management and what is the share of economic activities contributing to soil contamination?

Key message

The management of contaminated sites in the period from 2005 to 2011 showed progress with regard to the main site investigation, as well as implementation of remediation measures. With regard to completion of remediation measures, no progress has been recorded, i.e. completion of remediation measures has not been recorded in none of the identified hot-spots.

With regard to economic activities contributing to soil contamination expressed in percentage, the highest share belongs to mining and metallurgy with 31.25%, and oil refining and leather manufacturing industry with 6.25%.

Measure completed
Implementation of remediation measures

Main site investigation

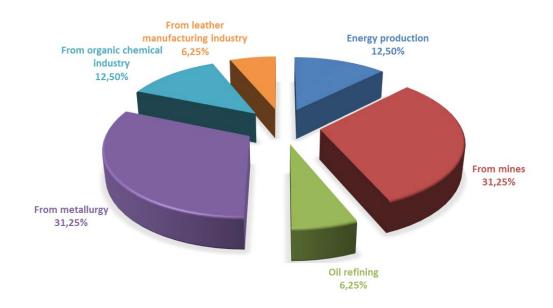
Preliminary investigation

Site identification/preliminary study

≥ 2011 **≥** 2009 **≥** 2005

10

12


14

16

18

Figure 1. Progress in contaminated sites management

Figure 2. Share of economic activities in soil contamination

Data coverage: excel

Data source: Ministry of Environment and Physical Planning

Assessment

In the Republic of Macedonia, identification and preliminary investigations have been carried out with 16 sites, where soil contamination has been detected and those sites have been marked as hotspots. Main investigations have been carried out with eight sites. Remediation measures have been implemented with three sites, while completion of measures has not been recorded with none of the sites.

With regard to economic activities contributing to soil contamination expressed in percentage, the highest share belongs to mining and metallurgy with 31.25%, followed by organic chemical industry with 12.5% and oil refining and leather manufacturing industry with 6.25%.

Reporting obligation

Soil contamination (TE-2)

Methodology

Methodology for the indicator calculation

Data for the indicator calculation was taken from the National Waste Management Plan of the Republic of Macedonia or Special Study E, and from CARDS 2006 Project concerning development of remediation plans with financial requirements for elimination of industrial hot-spots, as well as Feasibility assessment and development of main technical design for water protection measures in the mine Buchim – UNDP Macedonia.

The estimated shares of economic activities contributing to soil contamination are calculated as e.g. [number of mines contributing to soil contamination]/[total number of sites or sites where soil contamination has been confirmed] x 100.

Source of applied methodology

According to European Environmental Agency.

Uncertainty

Methodological uncertainty

Although there is a definition of contaminated site, because of the lack of limit values for the concentration of certain toxic chemicals in the soil, it is difficult to determine the exact number of sites where soil contamination has been confirmed.

The assessment of contaminated site depends to a great extent on the individual expert assessment.

Uncertainty of data set

All sites where certain industrial/economic activity is performed have not been accounted as sites with determined contamination, although such activities generate chemical substances.

Policy relevance of the indicator

List of relevant policy documents

The Second National Environmental Action Plan of the Republic of Macedonia.

Legal grounds

Our country lacks legally prescribed limit values for concentrations of certain contaminating substances in soil and standards for their detection in soil. Generally, the existing legislation is intended to prevent new contaminations.

Soil protection is regulated by several laws, including those concerning environment, nature protection, agricultural land, etc., but there is no soil specific law, with clearly defined institutional responsibilities.

Targets

Remediation of tailings, stabilization and re-cultivation of industrial landfills.

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 015	Progress in the management of contaminated sites	CSI 015	Progress in management of contaminated sites	R	Α	 chemicals industry management nature soil transport urbanization waste water 	annually

MK - NI 038

FOREST FIRES

Definition

The indicator provides information on the number of forest fires on the territory of the Republic of Macedonia. It also provides information on the magnitude of forest fires presenting the area subjected to fire and the type of wood mass seized by fire, as well as the total damage caused by fire.

Units

The area seized by fire is expressed in ha (hectares), while wood mass seized by fire is expressed in m³. The total damage from forest fires is expressed in denars, as well as number of forest fires.

Key policy issue

What is the status of forest fires in the Republic of Macedonia? What is the number of forest fires, what is the area and wood mass affected by fire?

Key message

In the Republic of Macedonia, rapid increase in the number of fires, area and mass affected by fire was tracked during the analyzed period, reaching the maximum of 652 fires in 2007. Then, there was a trend of gradual fall by 2009 with 61 fire events, and then the number of fires started to rise again in the following years.

The number of fires in 2015 compared to the number of fires in 2009 noted rise by 3 times.

Figure 1. Number of forest fires

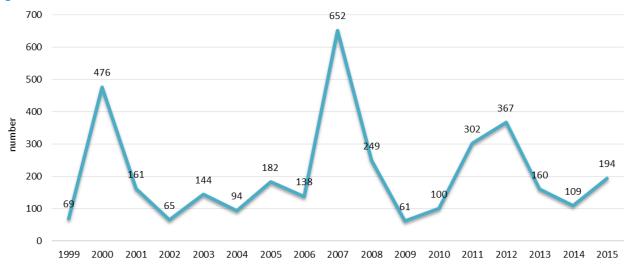


Figure 2. Area under fire

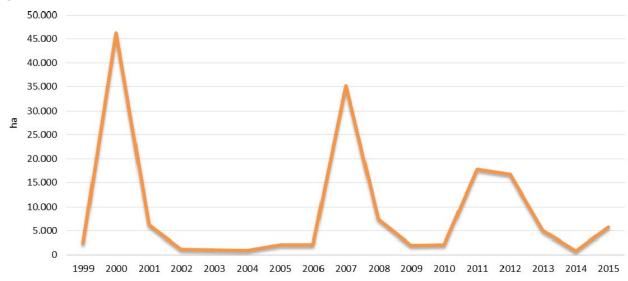


Figure 3. Wood mass subjected to fire

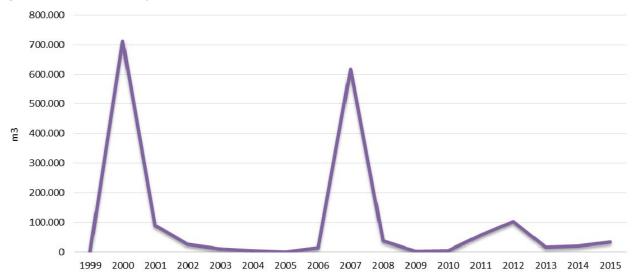
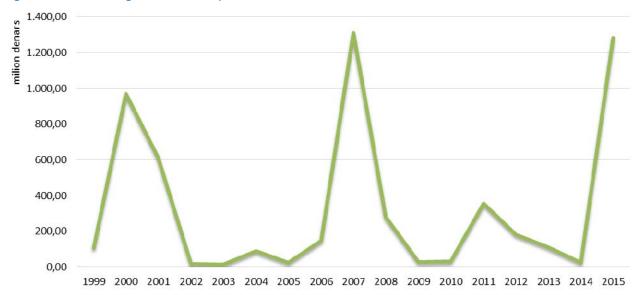



Figure 4. Total damage from fires expressed in denars

Source: Public Enterprise for Forests Management - "Macedonian Forests"

Assessment

Forest fires are among the most severe problems in forestry, as well as environment as a whole in the Republic of Macedonia. Great quantity of wood mass is destroyed by forest fires and this is an economic problem. Forest fires cause pollution of air, soil and water. Burnt woods are source of pathogens and pests. There is also increase in erosive processes in burnt areas, disturbed balance of water regime, loss of vegetation and desertification. Almost 95% of forest fires are caused by man. At an average, forest fires destroyed around 9.129.85 ha forest per year during the analyzed period. In the period from 1999 to 2015, the average number of forests per year was 207. In 2007, due to extreme draughts and human factor, the number of forest fires reached 652 fires at an area of around 35.000 ha.

In proportion with the parameters discussed above, the overall damage from fires by year expressed in denars was highest in 2007 reaching the value of 1.311.167.721,95 denars. In 2015, this value was 1.282.348.110.00 denars. The overall average damage from fires in the period from 1999 to 2015 amounted 328.894.370.77 denars per year.

Methodology

Methodology for the indicator calculation

Data and the indicator calculation were made by the Public Enterprise for Forests Management of the Republic of Macedonia - "Macedonian Forests".

Policy relevance of the indicator

List of relevant policy documents:

The Second National Environmental Action Plan (NEAP 2) defines measures for improved protection against forest fires, instructions on the need for capacity strengthening for sustainable forest management, as well as development of strategy for forest protection against fires.

Strategy for Sustainable Development of Forestry in the Republic of Macedonia.

Legal grounds

- Law on Forests, which regulates forests and forest resources management and protection. Protection of forests is integrated and indivisible part of the overall forest management. In the context of forests protection against fires and regulation of measures in this area, we should also mention the 2001 Rulebook on specific measures for forest protection against fires.
- Law on Natural Rarities Protection
- Law on National Parks Protection
- Law on Fire Prevention.

Targets

Compliance with the legislation concerning forests and forest resources protection. Reduction of forest fires number, reduction of wood mass and forest area affected by forest fires. Reduction of costs and damages resulting from forest fires. Increase of the public awareness in relation to fire prevention and undertaking all possible measures to reduce human factor as forest fires cause.

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 038	Forest fires	CLIM 035	Forest fires	P	А	SoilForestryAgricultureNatureUrbanization	annually

MK – NI 053 SOIL EROSION

Definition

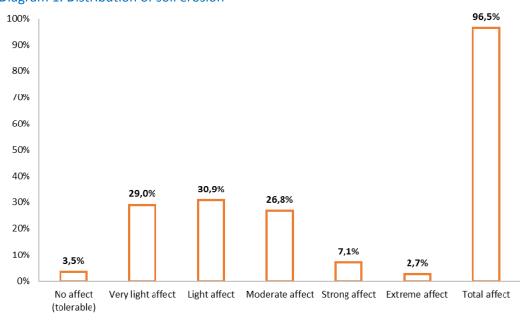
The indicator shows soil erosion which is natural process and is important for soil formation from geological point of view. With reference to soil erosion, particular attention is paid to accelerated erosion where natural speed of erosion is intensified due to anthropogenic factor, through application of inadequate agricultural practices, forest decrease, forest fires, construction activities, etc. Physical factors like climate, topography and soil properties are also relevant for soil erosion. Erosion of soil under the force of water is the most frequent and most severe problem both in Europe and our country. The indicator shows values for soil erosion, based on which we may identify regions affected by certain degree of erosion and develop measures for problem control.

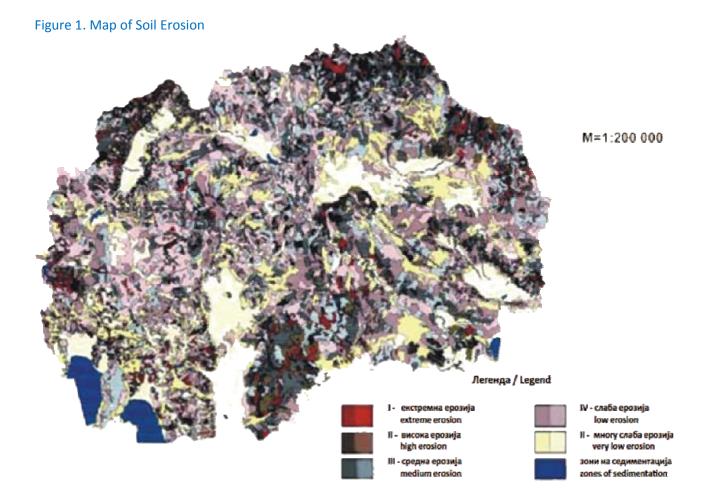
Units

- km² and %.

Key policy issue

To what extent is the soil in Macedonia affected by erosion?


Key message


Macedonia is one of erosion most affected territories on the Balkans. Water erosion is dominant in our country including erosion caused by rainfalls and running waters.

According to the Report of the European Environment Agency (Europe's Environment the Dobris Assessment, 1995), Macedonia belongs to the so called red zone of water erosion in Europe.

According to the Map of Erosion of Macedonia, 96.5% of the total area is under erosion process and 3.5% of the total national territory is not affected by erosion.

Diagram 1. Distribution of soil erosion

Source of data: Ministry of Environment and Physical Planning

Assessment

Water erosion is dominant in our country including erosion caused by rainfalls and running waters. Aeolian erosion is represented on high mountain peaks, but damages resulting from it are negligible compared to water erosion. This is also the case of abrasive erosion which is actually caused by lake water waves in our country.

Macedonia is one of erosion most affected territories on the Balkans. There are several reasons for this, such as: long-term destructive impact by man (destruction of natural vegetation, absence of measures for agricultural soil conservation, inadequate processing resulting in deterioration of physical soil properties); relief in which mounatains alternate with valleys with occurrence of steep and long inclination; erodibility of certain sediments, rocks and soils; climate conditions as torrent nature of precipitations, aridity of climate due to which natural vegetation cover on soil is weaker, and destroyed vegetation is harder to recover.

According to the Report of the European Environment Agency (Europe's Environment the Dobris Assessment, 1995), Macedonia belongs to the so called red zone of water erosion in Europe.

According to the Map of Erosion of Macedonia, 96.5% of the total area is under erosion process. 36.65% of the national area is affected by the first three categories of erosion (extreme -2.7%, high -7.1% and medium -26.8%). 59.9% of the national area is affected by low and very low erosion.

Annual loss of soil is average annual loss of arable soil layer of 20 cm in thickness over an area of 8.500 ha, which is loss of 17.000.000 m³ soi, every year.

The Map of Erosion of Macedonia was completed in 1992, but it was digitalized and published in 2002. It was prepared by emphirical model of Gavrilovich, according to whom there are five categories and 12 subcategories of erosion intensity.

Methodology

Methodology for the indicator calculation

Different methods can be used to assess erosion risk, divided mainly in expertise based assessments and model based assessments.

- Example for expertise based assessment is Global Assessment of Soil Degradation—GLASOD). This
 methodology is based on obtaining answers by certain experts in all countries and its main
 deficiency is the issue of control of objectivity of answers given and application of different
 standards by different experts in different regions. This methods identifies subjectively the regions
 with similar intensity of soil erosion, while not taking conditions leading to that into account
- 2. Example for model based assessment is the Pan-European Soil Erosion Risk Assessment (PESERA). This model is appropriate for anticipation of soil erosion degree, which takes into account precipitations and eroded sediments, daily precipitations accumulated during month, monthly vegetation cover, certain climate information, etc.

Homogenous and comprehendible data on soil erosion degree, including soils in our country, is obtained through the process of calculation and modeling, which use:

- Pedological maps
- Land cover maps (Corine Land Cover 2000)
- Topographic maps
- Climate maps with temperature data

Under the recommendation of the European Commission, soil erosion may be determined through appropriate recommended methods of modeling and on the basis of methods using expert assessment.

Policy relevance of the indicator

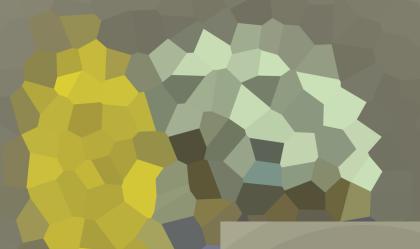
Legal grounds

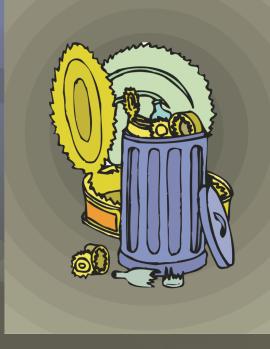
- Law on Environment (Official Gazette of RM no. 53/05, 81/05, 24/07, 159/08, 83/09, 48/10, 124/10, 51/11, 123/12, 93/13, 187/13 and 42/14)
- Law on Agricultural Land (Official Gazette of RM no. 135/07, 18/11, 42/11, 148/11, 95/12, 87/13, 106/13, 164/13 and 39/14)
- Second National Environmental Action Plan 2006
- Thematic Soil Strategy (COM (2006)231)
- Draft Framework Directive on Soils (COM (2006)232)
- To Thematic Strategy for Soil Protection (CEC, 2002)

Targets

According to the Spatial Plan of the Republic of Macedonia, counter-erosion protection of space should be conducted by combined measures, such as:

- Targeted use of areas susceptible to erosion;
- Terracing, intensive afforestation of erosion active areas and forests tending;
- Regulation of torrent watercourses with structural facilities;
- Special measures for protection against ruining, rock falls and land slides on steep slopes and river banks.


Regulation of torrent watercourses of I and II category of destructiveness which include 10.15 % of overall areas affected by erosive processes will contribute to remediation of erosive areas and regulation of torrent watercourses.


Reporting obligation

JRS (Joint Research Centre)/EEA (European Environment Agency)/EIONET

Code	Title of the indicator	Compliance with CSI/ EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 053	Soil erosion	CLIM 028	Soil erosion	Р	А	SoilClimate change	Every ten years

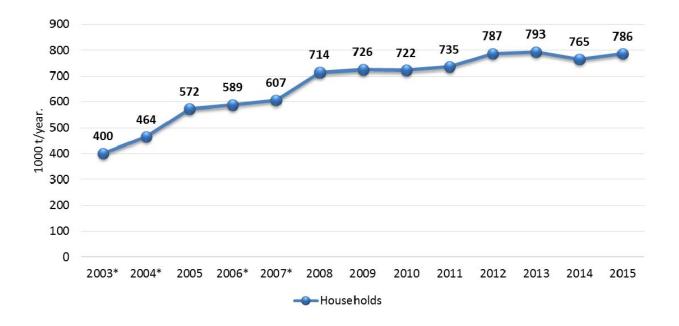
*MK - NI 016*MUNICIPAL WASTE GENERATION

Definition

The indicator presents generation of municipal waste expressed in kg per capita. Municipal waste is non-hazardous waste generated by natural persons in households and commercial waste and is collected by municipalities or on their behalf.

Units

Kilograms per capita per year, thousand tons, percentage.


Key question

Is the amount of generated municipal waste decreasing?

Key message

With reference to municipal waste, we may say that generation of municipal waste went hand in hand with the economic growth by 2012, while 2012 was marked by fall in the economic growth, but increase in generated municipal waste. This situation might be a result of improved process of collection of data and information on municipal waste, namely receipt of comprehensive and precise data on the quantity of generated municipal waste. Generation of municipal waste parallels economic growth and it cannot be decoupled from it yet.

Figure 1. Generated municipal waste in tons

450 381,80 384,00 370.00 380,00 400 348,82 353,68 351,34 357,07 350 280,60 288,45 297,03 300 227,99 250 197,05 200 150 100 50 0 2003* 2004* 2005 2006* 2007* 2008 2009 2010 2011 2012 2013 2014 2015 →Households waste per capita

Figure 2. Generation of municipal waste in kg per capita per year

Source of data: Releases of the State Statistical Office, Strategy for Waste Management in the Republic of Macedonia (2008-2020), MEPP, National Waste Management Plan (2009-2015) of the Republic of Macedonia, MEPP, World Bank

Assessment

The amount of generated municipal waste as indicator may show direction of movement of the use and the consumption of products and goods and it indirectly reflects the potential environmental burden if municipal waste fails to be recognized as potential resource. Increased generation of municipal waste indicates increased use and consumption of products and goods. Given the fact that nearly 100% of the collected municipal waste is disposed of at landfills, increased generation of municipal waste will potentially increase negative impact on environment.

Methodology

Types of wastes are determined by the 2005 List of waste types. Collection of data is performed mainly through surveys, estimates, administrative data. Reports are in a form of Relases of the State Statistical Office, Annual reports on municipal waste management by the Mayors of the Municipalities.

Policy relevance

List of relevant policy documents:

Second National Environmental Action Plan of the Republic of Macedonia (2006)

Strategy for Waste Management in the Republic of Macedonia (2008-2020)

National Waste Management Plan (2009-2015) of the Republic of Macedonia

Legal grounds

Law on Waste Management (2004)

National Classification of Activities NCA Rev.2 2006)

Reporting obligation

EUROSTAT

Code	Title of the indicator		e with CSI/EEA er indicators	Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 016	Municipal waste generation	CSI 016	Municipal waste generation	P	А	HouseholdsEconomyPopulationUrbanizationWaste	2-yearly

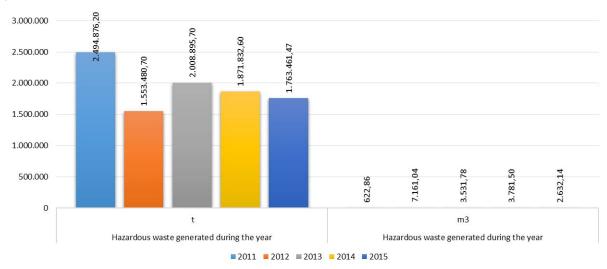
*MK - NI 056*MANAGEMENT OF HAZARDOUS WASTE

Definition

This indicator shows the amounts of generated hazardous waste, amounts of imported and exported hazardous waste, amount of temporarily stored hazardous waste, as well as treated hazardous waste as a whole.

Units

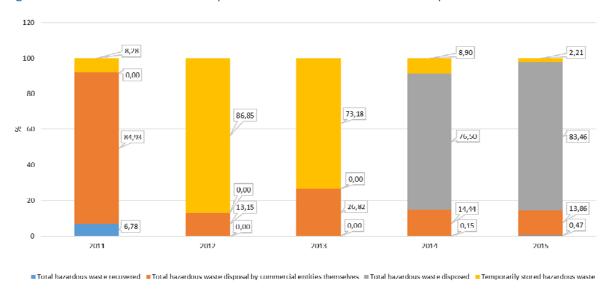
The amounts of hazardous waste are presented in tons, cubic meters and share of waste (%).


Key question

What is the manner of hazardous waste management, i.e. what is the trend of hazardous waste generation, import and export and the manner of its treatment?

Key message

Prevailing manner of hazardous waste management is its disposal by commercial entities that generate it themselves, followed by waste disposal, and then by hazardous waste recovery. As of 2011, the amount of generated hazardous waste has been decreasing gradually, with certain increase noted in 2013 compared to 2012.


Figure 1. Overview of the total generated hazardous waste presented in tons and cubic meters in the period 2011-2015

120 0,13 0,13 0,26 0,06 0,13 0,14 0,00 0,01 0,00 4,44 0,05 100 0.09 0.05 0,21 0,17 14,41 0,20 0,07 1,/2 0,01 × 60 /9,5/ 93,87 91,69 95,06 94,78 5,86 5,59 4,80 6,33 0,20 2011 2012 2013 2015 2014 Total hazardous waste recovered ■ Total hazardous waste disposal by commercial entities themselves ■ Total hazardous waste disposed Temporarily stored hazardous waste Imported hazardous waste ■ Exported hazardous waste

Figure 2. Share of the amount of imported and treated hazardous waste presented in tons

Source of data: Ministry of Environment and Physical Planning

Assessment

Prevailing manner of hazardous waste management in the period from 2011 to 2015 was its disposal by commercial entities that generated it themselves and it ranged from 94.92% in 2015 to 79.434% in 2013 as the least favourable manner of waste management with regard to consequences on environment and human health. The rate of hazardous waste recovery was 4.79 % in 2011, 6.31% in 2014, and there was great drop in hazardous waste recovery in 2015 amounting 0.19%.

The waste that cannot be treated or disposed appropriately is temporarily stored. Temporarily stored hazardous waste is the waste pending disposal or treatment. Treatment can be carried out in the country of generation or in another country. Uncontrolled transboundary movement of hazardous waste and its disposal or inappropriate handling may cause heavy health problems in people and may contaminate water and soil. Recycling, appropriate incineration and appropriate disposal of hazardous waste in the country of its disposal reduces the demand for hazardous waste transboundary movement and thus reduces the risk for human health and environment. In certain cases, international transport of hazardous waste is necessary and justified in terms of the waste proper disposal and treatment with no consequences for human health and environment, and such is its reuse as secondary raw material or for energy production. Import of hazardous waste in the Republic of Macedonia increased as of 2012 up to 2015 ranging from 0.052% to 4.43% for 2015. Export of hazardous waste ranged from 0.0025% for 2014 to 0.125% for 2015. Data on generated, imported, exported and disposed hazardous waste helps to control and monitor its movement and removal.

Methodology

Certain types of hazardous waste are grouped according the main economic activities based on the National Classification of Activities NCA Rev. 2 harmonized with the International Standards for Industrial Classification of All economic activities (ISIC). Types of hazardous waste are determined by the List of waste types. Appropriate treatment and disposal of waste are in accordance with definitions and conditions set in the Law on Waste Management. Collection of data is acquired mainly through submission of annual reports on hazardous waste management by commercial entities that generate hazardous waste from 2011 to 2015.

Policy relevance

List of relevant policy documents:

Second National Environmental Action Plan of the Republic of Macedonia (2006)

Strategy for Waste Management in the Republic of Macedonia (2008-2020)

National Waste Management Plan (2009-2015) of the Republic of Macedonia

Legal grounds

- Law on Waste Management (2004)
- National Classification of Activities NCA Rev.2 2006)
- List of waste types (2005)
- Ratified Basel Convention

Targets

Establishment of integrated waste management and financially self-sustainable waste management system.

Reporting obligation

EUROSTAT

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 056	Management of hazardous waste	UNECE	I-2: Management of hazardous waste	P R	Α	economypopulationurbanizationwaste	2 - year

MK - NI 057

FINAL MUNICIPAL WASTE MANAGEMENT

Definition

This indicator shows the final management of the overall amount of municipal waste through the processes of:

- Incineration (with and without energy recovery)
- Landfilling (controlled or uncontrolled landfills)
- Composting
- Reuse or recycling
- Other manner of management.

Units

■ Tons/year, percentage (%).

Key question

In which way or through which processes the final waste management is performed?

Key message

Waste landfilling on controlled landfills is the prevailing process in the final waste management in the Republic of Macedonia, followed by waste disposal on uncontrolled landfills. The processes of composting, reuse, recycling of municipal waste, as well as waste incineration with energy recovery are almost not represented in the country.

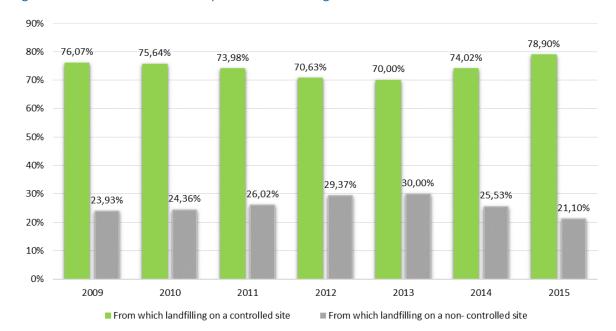


Figure 1. Overview of % of municipal waste landfilling on controlled and uncontrolled landfills

Source of data: State Statistical Office

Assessment

The way in which the waste is managed in the country has great impact on environment, economy and human health and wellbeing. Adequate waste management assumes that the Government is aware if the risks of waste for human health and environment and it supports and promotes appropriate measures to prevent waste generation or reduce it, as well as to manage it properly. Reduction in the amount of generated waste, as well as reuse and recycling of generated waste are ecologically the most favourable processes of waste management, as it also accomplishes reduction in raw materials and resources extraction. Another option of management of the waste that cannot be reused or recycled is incineration with energy recovery. The last option in waste management is its disposal in landfills and technically appropriately managed and controlled landfills are recommended for this purpose.

The two most represented processes of waste management, namely disposal of waste on controlled and uncontrolled landfills, are rather unfavourable for the environment, health of people and animals, as well as economy. Waste disposal on controlled landfills in the period 2009 to 2015 ranged from 76.07 % to 78.9 %, while disposal of waste on uncontrolled landfills was in the range between 23.93 % in 2009 and 21.1 % in 2015. All this indicates pollution of the environment and loss of natural resources. Absence of the processes of reuse, recycling, composting and incineration of waste with energy recovery reflects lack of recognition of the waste as resource and lack recovery of energy and matter contained in the waste.

Methodology

Types of hazardous waste are determined by the List of waste types. Appropriate treatment and disposal of waste are in accordance with definitions and conditions set in the Law on Waste Management. Collection of data is acquired mainly through surveys, estimates, and administrative data. Reports are in a form of releases of the State Statistical Office (2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016).

Policy relevance

List of relevant policy documents:

Second National Environmental Action Plan of the Republic of Macedonia (2006)

Strategy for Waste Management in the Republic of Macedonia (2008-2020)

National Waste Management Plan (2009-2015) of the Republic of Macedonia

Legal grounds

- Law on Waste Management (2004)
- List of waste types (2005)

Targets

Establishment of integrated waste management and financially self-sustainable waste management system.

Reporting obligation

EUROSTAT

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 057	Final municipal waste management	UNECE	I4a - Final waste disposal: Management of municipal waste	I	А	householdseconomypopulationurbanizationwaste	2 - years

MK - NI 064

QUANTITY OF GENERATED WASTE BATTERIES AND ACCUMULATORS

Definition

This indicator tracks the quantity of generated waste batteries and accumulators (WBA) by types; it also tracks the achievement of targets through avoiding and reducing the waste generated, achievement of high rate of waste batteries and accumulators collection, recycling and other types of waste batteries and accumulators recovery.

Units

Kilogram/year, percentage

Key policy question

What is the status of the quantity of batteries and accumulators released on the market in the Republic of Macedonia? What is the quantity of collected, treated, recycled and exported WBAs?

Key message

During the reporting period, from 2011 to 2014, gradual increase in the quantity of BAs released on the market in the Republic of Macedonia, quantity of collected waste batteries and accumulators, as well as quantity of treated and recycled waste batteries and accumulators was recorded. This means that the rate of WBAs collection aiming at achievement of the national targets is increasing.

Figure 1. Total quantity of batteries and accumulators released on the market

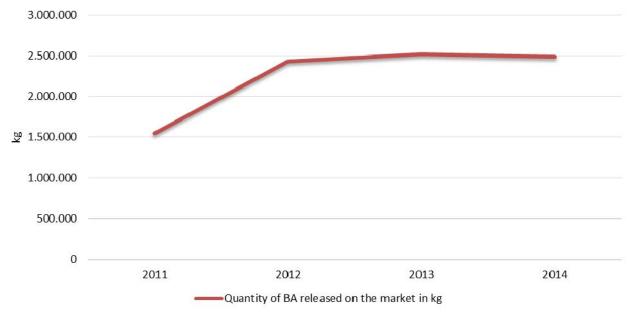


Figure 2. Total quantity of collected WBAs

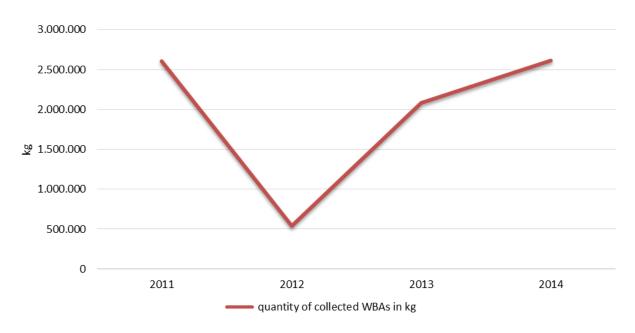
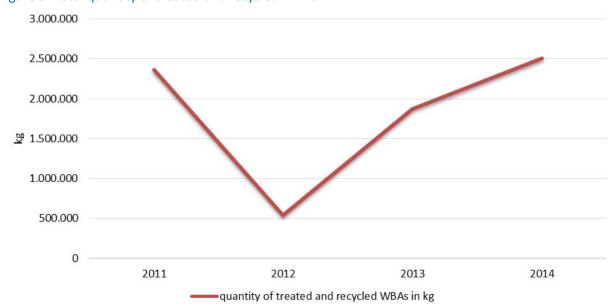



Figure 3. Total quantity of treated and recycled WBAs

Source of data: Ministry of Environment and Physical Planning

Assessment

The Law on the Management of Batteries and Accumulators and Waste Batteries and Accumulators sets the requirements for environment protection that have to be fulfilled by batteries and accumulators at their production and release on the market in the Republic of Macedonia. It also regulates the handling of waste batteries and accumulators including the obligations and responsibilities of economic operators and other entities involved in the process of production and release on the market batteries and accumulators that contain hazardous substances, the rules for collection, recovery, recycling and disposal of waste batteries and accumulators, as well as other conditions for waste batteries and accumulators handling, reporting and economic instruments for achievement of the national targets for waste batteries and accumulators collection and recovery.

The analyzed data for the period 2011 to 2014 shows increase in the quantity of batteries and accumulators released on the market by 60%.

The quantity of collected WBAs from 2011 to 2012 was reduced by 79.22%, but in the followup period from 2012 to 2014 it noted a positive trend increasing by four times. The quantity of treated and recycled WBAs from 2011 to 2012 manifested decrease by 77%, while from 2012 to 2014 it increased by four times.

The above indicates that the handling of waste batteries and accumulators has positive trend of increase in the quantities of collected waste batteries and accumulators by which the set national targets would be achieved gradually.

The quantity of exported WBAs for treatment and recycling for 2014 amounted 108.684 kg.

Methodology

Methodology for the indicator calculation

Data and calculation for the indicator were made by the Ministry of Environment and Physical Planning using information and data obtained under the Rulebook on the format and the content of the form of the annual report on waste batteries and accumulators handling and the manner of its submission, as well as the format and the content of the form for records keeping of the quantities and types of batteries and accumulators released on the market in the Republic of Macedonia.

Policy relevance of the indicator

List of relevant policy documents:

Strategy for Waste Management of the Republic of Macedonia (2008 -2020)

National Waste Management Plan of the Republic of Macedonia (2009 – 2015)

Assessment of the state of waste batteries and accumulators management of the Republic of Macedonia

Legal grounds

- Law on Waste Management
- Law on the Management of Batteries and Accumulators and Waste Batteries and Accumulators
- Rulebook on the format and the content of the form of the annual report on waste batteries and accumulators handling and the manner of its submission, as well as the format and the content of the form for records keeping of the quantities and types of batteries and accumulators released on the market in the Republic of Macedonia
- Rulebook on the manner of monitoring and calculating the achievement of the rates of waste batteries and accumulators collection, as well as the format and the content of the form for monitoring and calculation

EU and other international regulations:

Directive on batteries and accumulators and waste batteries and accumulators 2006/66/EC and amendments 2008/12/EC, 2008/103/EC

Targets

Under the principle of sustainable development of the Law on the Management of Batteries and Accumulators and Waste Batteries and Accumulators, the following general objectives should be achieved:

- Reduction in the quantity of waste batteries and accumulators disposed of at landfill,
- Achievement of high level of waste batteries and accumulators collection,
- Achievement of high level of waste batteries and accumulators recycling and other forms of recovery,
- Provision of conditions for establishment of handling system (return, collection, recovery and recycling) for waste batteries and accumulators,

- Provision of conditions for establishment and development of market for waste batteries and accumulators recovery and recycling, and
- Provision of equal position on the market between domestic and foreign legal and natural persons and avoidance and elimination of trade barriers that may disrupt the market.

Also, the following targets should be achieved:

- a) 25% at minimum of the weight of the portable batteries and accumulators released on the market in the Republic of Macedonia should be collected by the end of 2016, and
- b) 45% at minimum of the weight of the portable batteries and accumulators released on the market in the Republic of Macedonia should be collected by the end of 2020.

	Code	Title of the indicator	Compliance with CSI/EEAor other indicators		Classification by DPSIR	Typ e	Linkage with area	Frequency of publication
MI	K NI 064	Quantity of generated waste batteries and accumulators			P	В	waste	annually

MK - NI 065

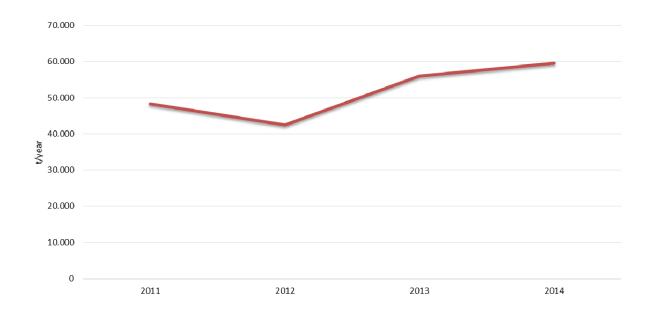
QUANTITY OF GENERATED PACKAGING WASTE

Definition

This indicator tracks the quantity of generated packaging waste. The purpose of this indicator is to prevent generation of packaging waste, reduce the quantity of packaging waste, achieve high rate of packaging reuse, recycling and other types of packaging waste recovery.

Units

Tons/year, %


Key policy question

What is the status of the quantity of packaging released on the market in the Republic of Macedonia? What is the quantity of generated, recycled and recovered packaging waste?

Key message

During the period from 2011 to 2014, increase was recorded in the quantity of packaging waste released on the market and consequentlyincrease in the quantity of collected, recycled and recovered individual materials of the packaging aiming at achievement of the national targets for packaging waste handling.

Figure 1. Trend of the overall quantities of packaging released on the market

18.000

14.000

12.000

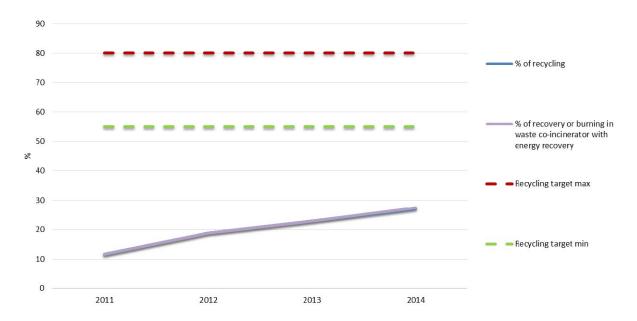
10.000

8.000

4.000

2.000

2013


2014

2012

Figure 2. Trend of the overall quantities of collected packaging waste

Figure 3. Trend of recycling and recovery by year compared to targets

2011

Data coverage: **exce**

Source of data: Ministry of Environment and Physical Planning

Assessment

The Law on the Management of Packaging and Packaging Waste sets the requirements for environment protection that have to be fulfilled by the packaging at production, release on the market and introducing for use. It also regulates the handling of the packaging waste including the obligations and responsibilities of economic operators and other entities involved in the process of production, release on the market and introducing for use of the packaging, the rules for collection, reuse, recovery and disposal, as well as other conditions for packaging waste handling, reporting and economic instruments for achievement of the national targets for packaging waste collection and recovery.

The quantity of the packaging waste released on the market in 2014 was 59.572.83 tons. This quantity compared to the one in 2011 reflects increase by 23%. Further more, the total quantity of collected packaging waste in 2014 increased by 2.5 times compared to 2011 and amounted 16.336.20 tons. The percentage of packaging waste recycling for 2014 was 27.08%, while the percentage of recovery or burning in waste co-incinerators with energy recovery was 27.38%.

The above indicates that the handling of packaging waste has positive trend of increase in the quantities of recycling of the material and other forms of recovery by which the set national targets would be achieved gradually.

Methodology

Methodology for the indicator calculation

The indicator was developed on the basis of the Rulebook on the format and the content of the form of the annual report on the type and the quantity of packaging released on the market or imported in the Republic of Macedonia during the preceding calendar year and such packaging waste handling, the format and the content of the form for records keeping of the overall packaging released on the market or imported in the Republic of Macedonia, as well as the manner of records keeping.

Rulebook on the manner of keeping, the format and the detailed content of the database and informations system of packaging and packaging waste.

Policy relevance of the indicator

List of relevant policy documents:

Strategy for Waste Management of the Republic of Macedonia (2008 -2020) National Waste Management Plan of the Republic of Macedonia (2009 – 2015) Programme for packaging waste management

Legal grounds

- Law on Waste Management
- Law on the Management of Packaging and Packaging Waste
- List of illustrative examples of packaging
- Rulebook on the manner of numbering and abbreviations on which the system of identification is based and marking of the materials of which the packaging was made, as well as the format and the content of the label for packaging waste handling
- Rulebook on the format and the content of the form of the annual report on the type and the quantity of packaging released on the market or imported in the Republic of Macedonia during the preceding calendar year and such packaging waste handling, the format and the content of the form for records keeping of the overall packaging released on the market or imported in the Republic of Macedonia, as well as the manner of records keeping
- Rulebook on the manner of keeping, the format and the detailed content of the database and informations system of packaging and packaging waste
- Rulebook on the conditions for durable packaging and types of packaging serving as parameters that the packaging is durable

EU and other international regulations:

Directive on packaging and packaging waste 94/62/EC and amendments 2004/12/EC

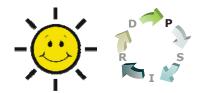
Targets

Under the principle of sustainable development of the Law on the Management of Packaging and Packaging Waste, the following general objectives should be achieved:

- to prevent generation of packaging waste,
- to reduce the quantity of packaging waste,
- to reduce and restrict the use of harmful metals and matters in packaging and thus reduce the toxicity of the packaging waste,

- to prevent or reduce negative impact of packaging waste on environment and provide high level of environment protection,
- to provide conditions for establishment of system for return, selection, collection, reuse, recovery and recycling of packaging waste,
- to provide conditions for establishment and development of market of packaging waste recovery and recycling, and
- to provide equal position between domestic and foreign legal and natural persons and avoide and eliminate trade barriers that may disrupt the market.

National targets for packaging waste handling require that the following quantities of packaging and packaging waste should be and recovered on the territory of the Republic of Macedonia within the following deadlines:


- a) by the end of 2020, at least 60% of the weight of the packaging waste generated on the territory of the Republic of Macedonia should be recovered by recovery operations or energy recovery operations;
- b) by the end of 2020, at least 55% and 80% at maximum of the weight of the packaging waste generated on the territory of the Republic of Macedonia should be recycled;
- c) by the end of 2020, the following quantities of materials of which the packaging is produced should be recycled:
- 60% glass,
- 60% paper and cardboard,
- 50% metals, and
- 15% wood; and
- d) by the end of 2018, 22.5% plastics, taking into account only the recyclable materials in the plastic.

The exported quantities of packaging waste will be taken into account in the fulfillment of the obligations and achievement of the targets set under the law only if there is evidence that those have been recovered in a manner not harmful for the environment and equivalent with the manner defined in the regulations for environment protection and waste management in the Republic of Macedonia.

Code	Title of the indicator	Compliance with CSI/EEAor other indicators		Classification by DPSIR	Typ e	Linkage with area	Frequency of publication
MK NI 065	Quantity of generated packaging			Р	В	waste	annually

MK - NI 066

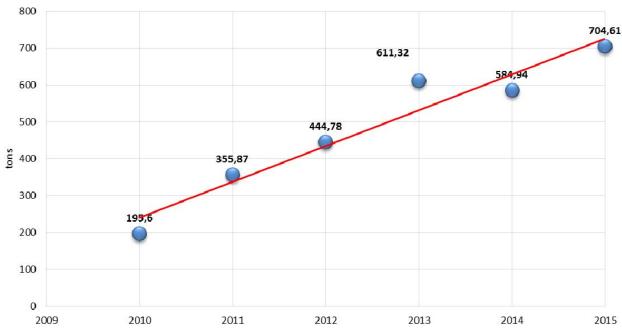
QUANTITY OF GENERATED MEDICAL WASTE

Definition

This indicator tracks the quantity of generated medical waste by types. This indicator monitors the achievement of strategic objectives, namely avoidance to the maximum extent possible, reduction of the quantity of generated hazardous waste, prevention of negative impacts of waste on environment, human life and health, as well as high level of environment and human life and health protection.

Units

Kilogram/Ton/year


Key policy question

What is the status of the quantity of medical waste in the Republic of Macedonia? Data on the types and the wuantities of medical waste and quantity for handling?

Key message

In the period between 2010 and 2015, gradual increase in the quantity of generated medical waste was recorded in the Republic of Macedonia. This leads to the conclusion that the number of hazardous medical waste generators increased as well and those are obliged to report once in a year on the waste handling in accordance with the legislation in the area of medical waste management.

Figure 1. Total quantity of generated medical waste in the period 2010 to 2015

Data coverage: **excel**

Source of data: Ministry of Environment and Physical Planning

Assessment

The quantity of generated medical waste in the period from 2010 to 2015 increased gradually. Based on the data submitted, the quantity of reported generated medical waste for 2015 amounted 704.61 tons compared to 2010 when the quantity of generated medical waste was 195.6 tons. The quantity of generated medical waste increased by 3.5 times.

According to reports submitted for 2015 for further handling of medical waste, the quantity of the medical waste handed over to other persons was 692 tons. Quantity of 11.87 tons of liquid waste was treated automatically, and 0.13 tons of medical waste was buried. The biggest portion of the reported quantity belongs to infective waste (18 01 03*) with 613.50 tons.

We may conclude that the medical waste handed over to third persons in the Republic of Macedonia is treated adequately and neutralized and does not pose any direct hazard to environment and people.

We should also point out that the presented quantities of medical waste do not show total quantities of generated medical waste at the level of the Republic of Macedonia.

Methodology

Methodology for the indicator calculation

The indicator is developed on the basis of data and information obtained in accordance with the provisions of the Rulebook on the format and the content of the journal for waste handling records keeping, the format and the content of the forms for the waste identification and transport and the format and the content of the forms of the annual reports for waste handling. The type of the waste is determined by the List of waste types.

Legal ground

- Law on Environment
- Law on Waste Management
- Rulebook on the manner of medical waste handling, as well as the manner of medical waste packaging and marking
- Rulebook on the format and the content of the journal for waste handling records keeping, the format and the content of the forms for the waste identification and transport and the format and the content of the forms of the annual reports for waste handling
- List of waste types
- National classification of activities
- Law on State Statistics
- Programme for statistical surveys

Targets

Avoidance and reduction to the maximum possible extent of the quantity of generated waste;

Disposal of waste in environmentally acceptable manner; and

High level of environment and human life and health protection.

Code	Title of the indicator	Compliance with CSI/EEAor other indicators		Classification by DPSIR	Typ e	Linkage with area	Frequency of publication
MK NI 066	Quantity of generated medical waste			Р	В	waste	annually

WATER

*MK - NI 018*USE OF FRESHWATER RESOURCES

Definition

The indicator observes the exploitation of freshwater resources according to their use in individual sectors, such as: public water supply, irrigation and electricity production (cooling), losses of water in water supply systems of legal persons registered for water abstraction for manufacturing or distribution of water, as well as the water exploitation index (WEI).

Units

- Water exploitation index WEI expressed in %;
- Quantity of freshwater resources used is expressed in million m³ per year.

Key policy issue

Is water resources approximation based on water resources sustainability?

Key message

In the period 1990 – 2014, oscillatory trend was tracked in water resources use. Particular rise was recorded in 2012 where the biggest quantities of freshwater resources were used for irrigation. This is due to the fact that 2012 was dry year and distribution of precipitations was such that enabled filling of water accumulations with the required quantities of water for irrigation.

Figure 1. Water exploitation index

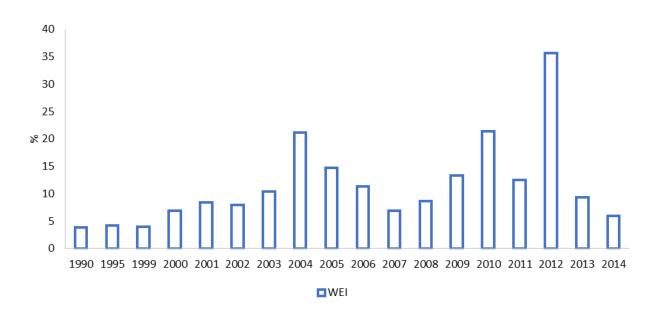


Figure 2. Water resources use by sectors

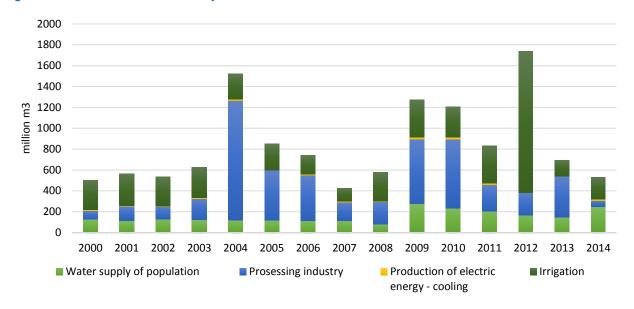


Figure 3. Abstracted water

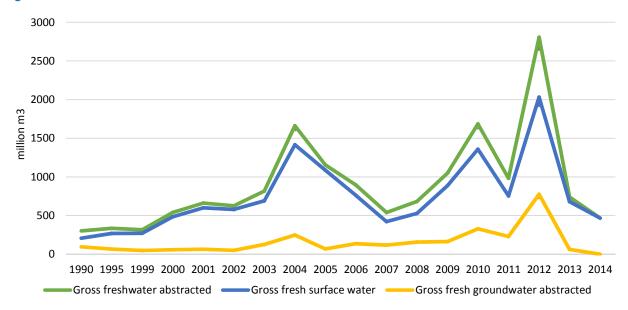


Figure 4. Gross abstracted surface freshwater

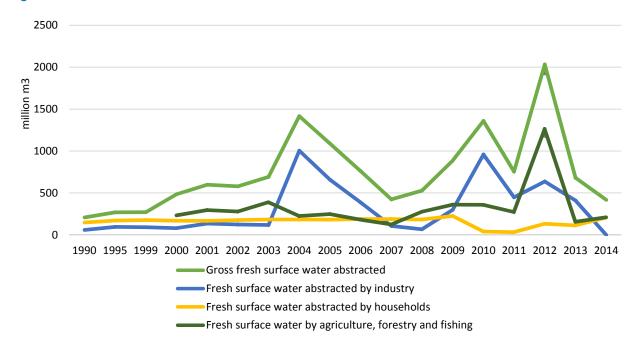


Figure 5. Gross abstracted ground freshwater

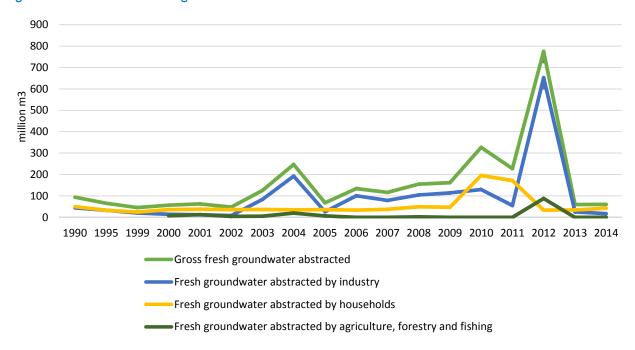


Figure 6. Freshwater loss in transport

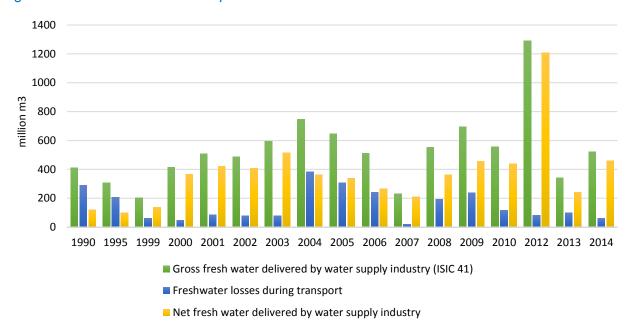
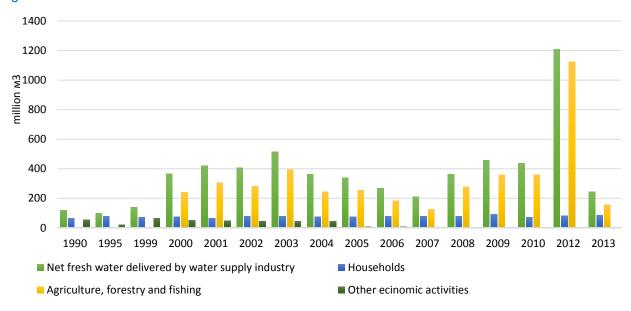



Figure 7. Net distributed freshwater

Source: State Statistical Office, Water Management Administration, Public Water Supply and Sewerage Enterprise, Water communities

Assessment

In the period 1990 – 2014, variable trend was tracked in freshwater resources use in the country. Particular rise was recorded in freshwater consumption in 2004 and 2012. Processing industry and irrigation are the main users of fresh surface and ground freshwaters during the analyzed period. In the years from 2000 to 2003, as well as in 2008, 2011 and 2012, the quantities of abstracted freshwater for irrigation exceeded the quantities for processing industry. Throughout the analyzed period, freshwater consumption for electricity production, i.e. power plants cooling, was the lowest.

As far as freshwater abstraction is considered, Figure 3 shows that surface freshwaters recorded the biggest quantities of freshwater were abstracted in 2012. During the analyzed period, abstraction of ground

freshwater resources was without major oscillations except in 2012 when rise was recorded. In the same year (2012) the values of abstracted surface freshwater were the highest, too.

Abstraction of ground freshwater resources is mainly for freshwater supply for households and part of industry, while the share of agriculture, forestry and fishery is negligible.

Diagram number 6 shows that the biggest loss of freshwater in transport occurred in 2004 and 2005, while the lowest losses were recorded in 2007 and years from 1999 to 2003. Contrary to this, in abstraction of ground freshwaters at net distributed freshwater, most of the freshwater is consumed for agriculture, forestry and fishery.

Methodology

Methodology for the indicator calculation

Data is collected and processed by sectors and types of industry.

Water Exploitation Index (wei) is calculated by the mean annual total abstraction of freshwater divided by the mean annual total renewable freshwater resource at the country level.

WEI = (totABS/LTAA) *100

Where: totABS = mean annual value of total freshwater abstraction for all purposes; LTAA = long term annual mean value of freshwater resources, where data is expressed in average for a period of at least 20 consecutive years. Unit =%

Policy relevance of the indicator

List of relevant policy documents:

The National Environmental Action Plan - 2 and Environmental Monitoring Strategy and Data Management Strategy.

The policy for sustainable use of water resources based on the Sixth Environmental Action Programme and Framework Water Directive requirements.

National Strategy for Waters.

Legal grounds

The Law on Waters prescribes the basic planning documents for protection, maintenance and constant improvement of the disposable water resources and rational use of the available water quantities.

Basic planning and water management development documents in the Republic of Macedonia are:

- The National Water Strategy
- Water Master Plan of the Republic of Macedonia and
- River Basin Management Plans.

The Law specifies that the maintenance and improvement of water regime is carried out on the basis of River Basin Management Plans. Such Plans contain the environmental protection goals, good status of surface water bodies (good quantitative status and chemical status, including good ecological potential) and of the groundwater resources (good quantitative status and chemical status).

Use of water for different purposes is specified under the Decree on Water Classification, according to which water is divided into five different classes based on the level of pollution, while water characteristics are determined on the basis of classes and purposes for which water can be used.

Targets

No specific targets.

Reporting obligation

OECD/EUROSTAT

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 018	Use of freshwater resources	CSI 018	Use of freshwater resources	Р	А	■ water	annual

MK - NI 019

OXYGEN CONSUMING SUBSTANCES IN RIVERS

Definition

The key indicator for the oxygenation status of water bodies is the biochemical oxygen demand (BOD) which is the demand for oxygen resulting from organisms in water that consume oxidisable organic matter. The indicator illustrates the current situation and trends regarding BOD and concentrations of ammonium (NH₄) in rivers.

Units

 Annual average BOD after 5 or 7 days incubation (BOD₅/BOD₇) is expressed in mg O₂/l and annual average total ammonium concentrations in micrograms N/l.

Key policy issue

Has pollution of rivers by biochemical oxygen demand (BOD₅) and ammonium not noted increase?

Key message

During the assessed period in the Republic of Macedonia, from 2000 to 2015, stable trend in BOD 5 and concentrations of ammonium in rivers was tracked up to 2008, followed by decrease in BOD 5 and ammonium concentrations in the period from 2009 to 2010, while the remained period which is subject of analysis was characterized by slight increase. As far as ammonium concentrations in rivers are concerned, there are significant variations every year. At some monitoring stations, located on the rivers Crna Reka and Vardar, moderately eutrophic water status related to BOD₅ value was recorded. These results could reflect the status of inefficient treatment of urban and industrial wastewaters in the country, as well as the inadequate protection of river basins.

Adequate protection of rivers, and especially the introduction of regular wastewater treatment in the country, is the top priority of the policy at both national and local levels.

Figure 1. Biochemical oxygen demand (BOD₅) in rivers

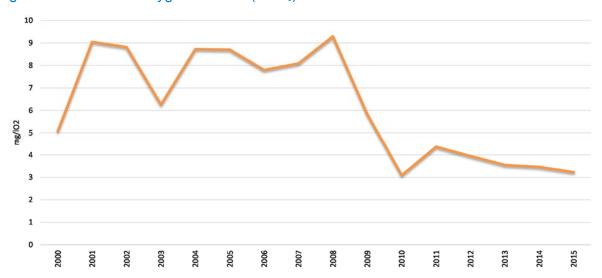


Figure 2. Biochemical oxygen demand (BOD $_5$) in rivers by river

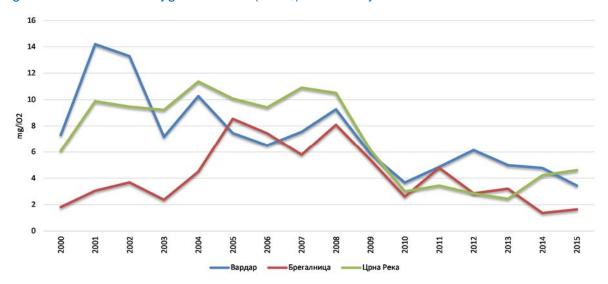


Figure 3. Total ammonium in rivers

3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00 2012 2013 2001 2002 2003 2004 2011 2014 2015

Figure 4. Total ammonium in rivers by river

Data coverage: **excel**

Source: MEPP, HMA

Assessment

There was a stable trend in BOD_5 and concentrations of ammonium in the rivers in the Republic of Macedonia in the period 2000 to 2008. Decreases in BOD_5 concentrations and ammonium concentrations were tracked in 2009 and 2010, followed by slight increase of concentrations in the follow-up period. Moderately eutrophic status in relation to the level of BOD_5 was recorded in the river of Vardar. These results could reflect the status of inefficient treatment of urban and industrial wastewaters in the country, as well as the inadequate protection of river basins.

Methodology

Methodology for the indicator calculation

Indicators calculation is based on the methodology established by Eurowaternet, determined by the European Topic Centre for water under the European Environmental Agency.

This process defines the manner of selection of the monitoring stations, the types of parameters to be monitored, as well as thefrequency of their collection.

Policy relevance of the indicator

List of relevant policy documents:

The National Environmental Action Plan - 2,

The Environmental Monitoring Strategy and Environmental Data Management Strategy,

Strategy for Waters has been developed in order to establish long-term policy that will secure sustainable development of waters by meeting the demands of all water users, protecting waters against pollution and pollution control.

The Law on Waters transposing the following EU Directives into the national legislation:

• Framework Water Directive (FWD) 2000/60/EEC, according to which, by the year of 2015, rivers in EU should achieve good ecological status or good ecological potential.

- Directive on nitrates (91/676/EEC), the goal of which is to reduce nitrates and pollution by organic matter originating from agricultural lands.
- Directive on urban wastewater treatment (91/271/EEC) aimed at reducing the pollution from sewerage and industrial wastewater treatment plants

The Law on Environment has transposed the Directive on Industrial Pollution Prevention and Control (IPPC) 96/61/EEC is aimed at control and prevention of water resources pollution by industry.

Legal grounds

The Law on Waters prescribes the main planning documents for water protection, maintenance and permanent improvement of available water resources and sustainable use of available water quantities.

The main planning documents for water management planning and development include:

- The National Strategy for Waters
- Water Management Master Plan of the Republic of Macedonia, and
- River basin management plans.

For the purpose of maintenance and improvement of the quality of water and establishment of the adequacy of water for use for different purposes, the Law on Waters specifies classification of waters and categorization of water bodies, as well as specification of deadline for achievement of the water quality goals for each water category and specification of the minimum standards for water quality and environmental protection goals for all water bodies. According to the Law, management plan will be adopted for each river basin, in order to achieve the environmental protection objectives.

The Decree on categorization of water courses, lakes, accumulations and water resources (1999) specifies the quality of water by specific classes of water in water bodies, lakes, accumulations and groundwater resources. This Decree also establishes five categories of water courses.

Targets

Reduction and prevention of water pollution and thus achievement of good ecological status or potential of waters. Requirements of the relevant EU Directives (FWD, urban wastewater treatment, nitrates, Directive on hazardous substances, as well as Directives on drinking and bathing waters) have been transposed in the Law on Waters.

Reporting obligation

■ EEA

Code	Title of the indicator	•	Compliance with CSI EEA or other indicators		Туре	Linkage with area	Frequency of publication
MK NI 019	Oxygen consuming substances in rivers	CSI 019	Oxygen consuming substances in rivers	S	А	water	annual

MK - NI 020

NUTRIENTS IN FRESHWATER

Definition

Concentrations of orthophosphate and nitrate in rivers, total phosphorus and nitrate in groundwater bodies. The indicator can be used to illustrate geographical variations in current nutrient concentrations and temporal trends.

Units

Concentration of nitrate is expressed as mg nitrate (NO₃)/I, and orthophosphate and total phosphorus as mgP/I.

Key policy question

Has the nutrients concentration in water courses shown rising trend?

Key message

Despite of the absence of continuous monitoring of the status of groundwaters quality in the Republic of Macedoniaduring the last years, it can be stated that the concentration of nitrates in drinking water has been in a stable ecological health status.

In the analyzed period, slight drop was recorded in the mean annual concentrations of nitrates and orthophosphates in all three rivers. An exception was recorded in the period from 2013 to 2015, when insignificant increase in orthophosphates concentrations was recorded in all three rivers.

Throughout the investigation period, the Lake of Ohrid has sustained its oligotrophic nature as shown on the Table on the concentrations of phosphorus and nitrates. Significantly higher concentration was found in the waters of the Lake of Prespa, thus increasing the risk of Lake's water eutrophication.

Figure 1. Nitrates and orthophosphatesin rivers

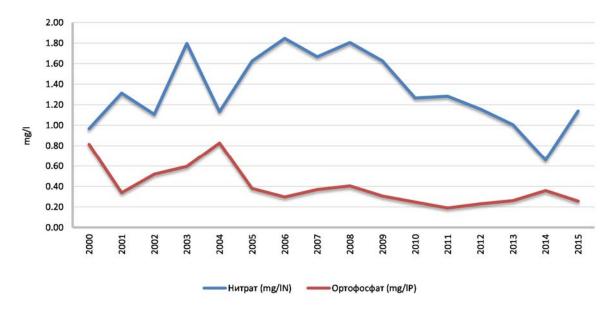


Figure 2. Nitratesin rivers by river

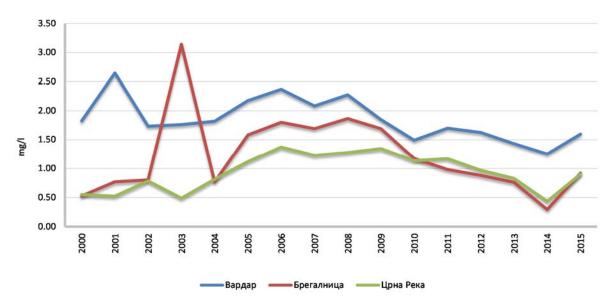
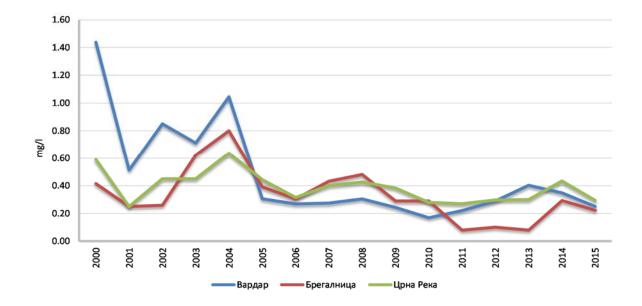
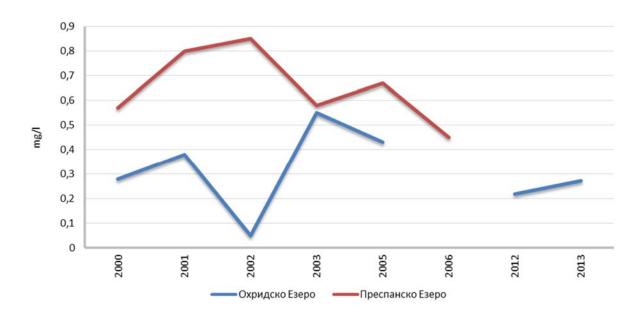



Figure 3. Orthophosphatesin riversby river


0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 2000 2002 2013 2015 2003 2004 2006 2009 2010 2011 2012

Преспанско Езеро

Охридско Езеро

Figure 4. Total phosphorous in lakes

Data coverage: **excel**

Source: MEPP, HMA, HBI

Assessment

Annual mean concentrations of nitrates and orthophosphates have remained relatively stable since the beginning of 1990's. It has been found out that the concentration of these parameters is higher at certain measuring points of VardarRiver.

Analysis of the results from the measurements in the plagial parts of OhridLake throughout the period has confirmed the oligotrophic nature with relatively stable concentrations of phosphorus

(below 0.015 mg./l), with higher concentrations of phosphorous (0.030 mg/l)recorded in 2007 in Ohrid Lake and nitrates concentrations within permissible limits (mean annual concentrations below 0.55 mg/l). In 2013 and 2014, investigations were carried out in Ohrid Lake litoral zone and therefore higher concentrations of nitrates and total phosphorous were recorded. Concentrations are significantly higher in Prespa Lake, where organic compounds are found at high levels, thus increasing the risk of Lake's water eutrophication.

Methodology

Methodology for the indicator calculation

The calculation of the indicator is based on the methodology established under Eurowaternet, established by the European Topic Centre for waters of the European Environmental Agency.

Under this process, the manner of selection of monitoring stations is defined and the type of monitoring parameters and the frequency of their collection are specified.

Policy relevance of the indicator

List of relevant policy documents:

The National Environmental Action Plan - 2 and the Environmental Monitoring Strategy and Environmental Data Management Strategy.

Strategy for Waters has been developed in order to establish long-term policy that will secure sustainable development of waters by meeting the demands of all water users, protecting waters against pollution and providing pollution control.

The Law on Waters transposing the following EU Directives into the national legislation:

- Framework Water Directive (FWD) 2000/60/EEC, according to which, by the year of 2015, rivers in EU should achieve good ecological status or good ecological potential.
- Directive on nitrates (91/676/EEC), the goal of which is to reduce nitrates and pollution by organic matter originating from agricultural lands.
- Directive on urban wastewater treatment (91/271/EEC) aimed at reducing the pollution from sewerage and industrial wastewater treatment plants

The Law on Environment has transposed the Directive on Industrial Pollution Prevention and Control (IPPC) 96/61/EEC is aimed at control and prevention of water resources pollution by industry.

Legal grounds

The Law on Waters prescribes the main planning documents for water protection, maintenance and permanent improvement of available water resources and sustainable use of available water quantities.

The main planning documents for water management planning and development include:

- The National Strategy for Waters
- Water Management Master Plan of the Republic of Macedonia, and
- River basin management plans.

For the purpose of maintenance and improvement of the quality of water and establishment of the

adequacy of water for use for different purposes, the Law on Waters specifies classification of waters and categorization of water bodies, as well as specification of deadline for achievement of the water quality goals for each water category and specification of the minimum standards for water quality and environmental protection goals for all water bodies. Such plans contain environmental protection objectives in order to achieve good status of surface water bodies (good quantitative and chemical status, including also good ecological potential) and ground water resources (good quantitative status and chemical status).

The Decree on categorization of water courses, lakes, accumulations and water resources (1999) specifies the quality of water by specific classes of water in water bodies, lakes, accumulations and groundwater resources. This Decree also establishes five categories of water courses

Under the Law on Waters, authorities responsible for health protection are obliged to carry out monitoring of waters intended for human consumption and bathing waters, and for undertaking measures for active protection of the population against communicable diseases of high social and health relevance. The competent institutes perform microbiological parasitological, hygienic, toxicological and biochemical analyses within the scope of their activity.

Programme for preventive health protection performs monitoring over the quality of surface waters at all points of health interest, in order to enable timely undertaking of measures for population protection. Waters used as drinking water sources, sports and recreation and primary agricultural production are of highest interest..

Targets

The indicator is not related directly to the requirements of a single Directive. Ecological quality of surface water requiring reduction of eutrophication and nutrient concentrations is a target specified in several Directives, namely:

- Directive on drinking water (98/83/EC) maximum permissible concentration of nitrates is 50 mg/l;
- Directive on abstraction of surface water intended for drinking (75/440/EEC) requires nitrates concentration of 25 mg/l.
- Directive on nitrates (91/676/EEC) requires identification of groundwater bodies where the annual concentration exceeds or may exceed 50 mg/l nitrates.
- Directive on urban wastewater treatment (91/71/EEC) specifies reduction of the pollution caused by organic matter as its objective.

Reporting obligation

■ FFA

Code	Title of the indicator	Compliance with CSI/EEAor other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MKNI 020	Nutrients in freshwaters	CSI 020	Nutrients in freshwater	S	Α	water	annually

*MK - NI 022*BATHING WATER QUALITY

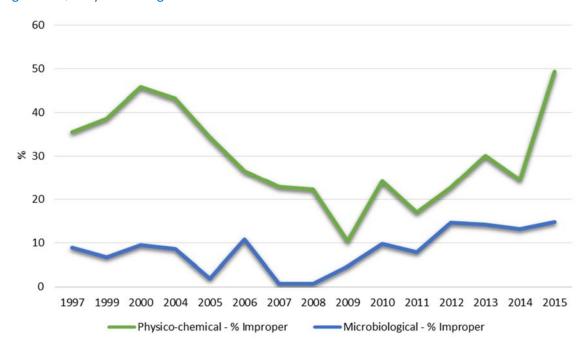
Definition

The indicator describes the changes over time in the quality of designated bathing waters in terms of compliance with standards for microbiological parameters (total coliforms and faecal coliforms) and physicochemical parameters (mineral oils, surface-active substances and phenols) introduced by the EU Bathing Water Directive (76/160/EEC).

Units

The data is expressed in a form of percentage of inland bathing waters with mandatory standards and levels specified in guidelines for microbiological and physicochemical parameters.

Key policy issue


Has the quality of bathing water improved?

Key message

The quality of lake water is at mainly satisfactory level. However, there are rivers which with their entry into the lakes contribute to deterioration of the quality of lake water. The percentage of samples with non-compliant quality is still very high (especially for physical and chemical parameters) Settlements around the three natural lakes are among the rare ones with wastewater treatment plants available in the country.

Approximation of the national legislation and standards in this area with the EU Bathing Water Directive should continue.

Figure 1. Quality of bathing freshwater - lakes

120 100 80 % 60 40 20 0 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Physico-chemical - % Improper ■ Microbiological - % Improper

Figure 2. Quality of bathing freshwater – artificial lakes

Data coverage: **exce**

Source: Public Health Institute of the Republic of Macedonia

Assessment

The greatest proportion of water areas in the country belongs to natural lakes, the shores of which are used for recreation purposes. The quality of water in these lakes is threatened by discharges of wastewater, uncontrolled use of lake waters for agricultural and tourism purposes, as well as by weather conditions. Apart from natural lakes, there are artificial lakes - water accumulations in the Republic of Macedonia, used for both recreation and economic purposes.

The problems of bathing water quality protection in the lakes are closely related to the implementation of one of the highest priorities in the country's environment protection - construction of adequate wastewater treatment facilities.

As international waters, the waters of the biggest natural lakes, i.e. Ohrid and Prespa, are also subject of bilateral and trilateral agreements between the Republic of Macedonia, Republic of Albania and Republic of Greece, respectively.

Methodology

Methodology for the indicator calculation

Standard methodology for sampling - annual data.

Policy relevance of the indicator

List of relevant policy documents

The National Environmental Action Plan - 2 and the Environmental Monitoring Strategy and Environmental Data Management Strategy.

Bathing Water Directive (76/160/EEC) requires the countries to identify water bodies intended for bathing and carry out monitoring of their quality during the bathing period. Water bodies identified

for bathing are those water bodies designated by the competent authorities and those where bathing has been practiced traditionally by high number of swimmers. The bathing period is determined in accordance with the period during which the highest number of swimmers is present. Qualitative monitoring takes place on daily basis during the bathing season, as well as two weeks before the commencement of the bathing season. 95% of the samples have to comply with mandatory standards.

Legal grounds

Law on Waters, Decree on categorization of water courses, lakes, accumulations and water resources.

Targets

It is necessary that all water bodies identified for bathing comply with mandatory values of water quality specified in Bathing Water Directive and the provisions of the Law on Waters.

Reporting obligation

WHO

Code	Title of the indicator	Compliance with CSI/EEAor other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 022	Bathing water quality	CSI 022	Bathing water quality	S	В	shore water	annually

MK - NI 024 URBAN WASTE WATER TREATMENT

Definition

Percentage of population connected to primary, secondary and tertiary wastewater treatment plants. The indicator illustrates:

- 1. changes in wastewater treatment;
- 2. conformity in terms of providing primary, secondary and tertiary treatment;
- 3. levels of urban wastewater treatment in large cities (agglomerations >150 000 p.e.).

Units

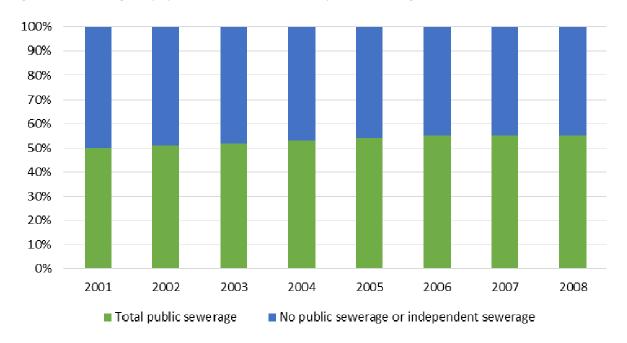
 Percentages of population connected to primary, secondary and tertiary wastewater treatment.

Key policy issue

To what extent will the system of urban waste waters collection, removal and treatment improve the status of freshwaters in the Republic of Macedonia?

Key message

The requirements of the Directive concerning municipal wastewater treatment have not been implemented in the current Law on Waters.


According to the results on the distribution of the population in the Republic of Macedonia in relation to treated municipal wastewaters involving only mechanical treatment, biological treatment and latest treatment technology, it can be concluded that there is no conformity with the Urban Wastewater Treatment Directive. The percentage of the population covered by municipal wastewater treatment with included biological treatment is very low. Therefore, the introduction of regular treatment of wastewaters in the country is top priority, both at local and national levels.

In the past period, no reduction in BOD 5 and in concentrations of ammonium in rivers (MK NI 019) has been observed in the Republic of Macedonia. At some monitoring stations, located on the rivers Crna Reka and Vardar, eutrophic water status with high BOD value was recorded. These results could reflect the status of inefficient treatment of urban and industrial wastewaters in the country, as well as the inadequate protection of river basins.

% Mechanical treatment only ■ Biological treatment Other sewage treatment

Figure 1. Treatment of wastewater from the public sewerage network

Figure 2. Percentage of population with and without public sewerage network

Data coverage: **excel**

Source: Republic Institute for Health Protection

Assessment

According to the results on the distribution of the population in the Republic of Macedonia in relation to treated municipal wastewaters involving only mechanical treatment, biological treatment and application of latest treatment technology, and in relation to public sewerage, it can be concluded that the percentage of such population is very low. Despite of the rising trend, the current state is unsatisfactory with regard to EU requirements.

Methodology

Methodology for the indicator calculation

In accordance with the requirements of EUROSTAT

Policy relevance of the indicator

List of relevant policy documents

The National Environmental Action Plan (NEAP) 2.

Environmental Monitoring Strategy and Environmental Data Management Strategy.

Under the Urban Wastewater Treatment Directive, the EU Member States are required to provide connection to wastewater collection systems in all agglomerations exceeding 2 000 population equivalent. Secondary (biologicxal) treatment must be provided in all agglomerations exceeding 2 000 population equivalent and discharging wastewater directly into receiving freshwater resources. It provides for specific requirements for different deadlines for compliance achievement depending on the sensitivity of receiving waters with regard to agglomerations exceeding 10 000 population equivalent.

The performance of wastewater treatment is monitored for five different parameters: BOD, COD, total suspended matter, total nitrates and total phosphorous.

In the case of smaller agglomerations and those connected to wastewater collection systems, the treated wastewater at the outlet has to comply with quality targets of the recipient.

Legal grounds

The Law on Waters prescribes maintenance and improvement of water regime carried out on the basis of river basin management plans. Such Plans contain environmental protection objectives, good ecological status of surface water bodies (good quantitative and chemical status, including good ecological potential) and groundwater resources (good quantitative status and good chemical status).

River Basins Management Plans will be implemented through issuance of permits for water use, permits for extraction of sand, gravel and stone and permits for water discharges specifying quantitative and qualitative requirements in each case individually.

For the purpose of maintenance and improvement of the quality of water and establishment of the adequacy of water for use for different purposes, the Law on Waters specifies classification of waters and categorization of water bodies, as well as specification of deadline for achievement of the water quality goals for each water category and specification of the minimum standards for water quality and environmental protection goals for all water bodies. According to the Law, Programme with measures for environmental protection goals shall be adopted for each river basin.

The Decree on categorization of water courses, lakes, accumulations and water resources specifies the quality of water by specific classes of water in water bodies, lakes, accumulations and groundwater resources. This Decree also establishes five categories of water courses вытх регард то ватер љуалитѕ гоалс специфиед тхереин. In order to maintain the quantity and the quality of the water (water regime), the competent authority issues water management consent in relation to construction, reconstruction, connection or extension of facilities that make impact on waters and water management permit for use of water as resource or as recipient. In circumstances of absence of emission standards for individual polluters and pollutants, the said documents are issued on the basis of specific expert assessment by the competent authority, for each case separately, taking into account the principle of sustainable use of water resources and providing care for the quality of wastewater discharged, in order to prevent the water to exceede the quality standards applied for the recipient

The Law on Public Health Protection specifies that the Regional Institutes for Health Protection,

coordinated by the Republic Institute for Health Protection, are obliged to monitor environmental-health and other conditions of relevance for the protection of drinking water and to undertake measures for active protection of the population against communicable and other diseases of high health and social relevance. These Institutes perform microbiological, parasitological, hygiene, toxicological and biochemical analyses within the scope of their activity.

Monitoring of the surface waters quantity is performed under the Programme for Preventive Public Health Protection, adopted at annual basis and published in the Official Gazette of the Republic of Macedonia. Monitoring of the surface waters quality at all points of health relevance is performed under the Programme for Preventive Public Health Protection, in order to enable undertaking of timely measures for public health protection. Waters used as drinking water sources, for sports and recreation, as well as for primary agriculture production, are of highest interest

The National Strategy for Waters is adopted to cover 30 period. It should provide sustainable development of waters, through meeting the demands of all users, protecting waters against pollution, protecting and improving aquatic ecosystems and providing protection against harmful impacts of waters. The Strategy should be adopted by the Assembly of the Republic of Macedonia.

Targets

Requirements of the relevant EU Directives, (FWD, on urban wastewater treatment, on nitrates, on hazardous substances, as well as Directives on drinking and bathing waters) have been transposed in the Law on Waters, thus enabling reduction and prevention of water pollution and achievement of good ecological status or potential of waters.

The Urban Wastewater Treatment Directive, aimed at protecting the environment against impacts caused by urban wastewater discharges. In addition to this, compliance with the requirements specified in the Urban Wastewater Treatment Directive and Directive on Integrated Pollution Prevention and Control is incorporated in the goals of the Framework Water Directive, the main goal of which is the achievement of good chemical and biological status of all waters by 2015.

Reporting obligation

EUROSTAT

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 024	Urban wastewater treatment	CSI 024	Urban waste water treatment	P	Α	water waste	Annually

*MK - NI 039*DRINKING WATER QUALITY

Definition

This indicator shows the exceedance of limit values set in Drinking Water Directive (80/778/EEC) and its amendment (98/83/EC which entered into force in 2003) and in the Rulebook on drinking water safety (Official Gazette of the Republic of Macedonia No.57/04), as well as the guideline values set for the quality of drinking water by the World Health Organization (WHO, 2004 and 2006).

Exceedance of drinking water quality limit values occurs when the concentration/dose of the pollutant exceeds the limit values specified in the above listed regulations.

Where more than one limit values exist (see the section on Policy goals), the indicator shall adopt the most strict case.

Units

- Number of aerobic mesophilic bacteria in 1 ml,
- Number of coliform bacteria in 100 ml,
- Number of thermo-tolerant coliform bacteria in 100 ml,
- Concentration of physico-chemical pollutants in mg/l,
- Parameters for radiological safety of drinking water in bekerels/l and total indicative dose in mSV/l.

Key policy issue

What progress has been made in reducing the concentrations of pollutants in urban and rural environments in order to reach drinking water limit values specified in the Rulebook?

Key message

Access to safe drinking water in the Republic of Macedonia amounts 94% (period from 2001 to 2015) with a note that population in urban areas has 99% access to safe drinking water and 78% of rural population has access to health safe drinking water, while the rest is exposed at occasional risk of bacteriological pollution of drinking water.

100% 98% 96% 94% % 92% 95 8 94,9 90% 93,6 93,2 93,4 91,48 88% 86% 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Исправни Физичко-хемиски % неисправни Микробиолошки % неисправни

Figure 1.Drinking water quality in percentage

Data coverage: **excel**

Source: Public Health Institute of the Republic of Macedonia, PHI – 10 Regional

Assessment

Sanitary and hygienic condition of facilities and health safety of analyzed water samples are, generally, satisfactory, i.e. within the expected limits compared to previous years. In the period 2001-2015, the percentage of unsafe samples based on physical and chemical analysis ranged between 2.99 and 7.5 %, while the percentage of unsafe samples based on microbiological analysis ranged between 0.8 and 2.99%. The most frequent causes of unsafe findings in the physical and chemical include absence of residual chlorine or increased content of iron in raw water and in very few samples it is due to increased content of nitrites from dag or drilled wells of individual users.

With bacteriologically positive findings, the cause is mostly increased number of aerobic mesophile bacteria. Toxic parameters are within the prescribed legal norms.

In the segment of health safe drinking water supply in rural populated places, the deficiencies in terms of undefined sanitary protection zones around drinking water sources, lack of adequate equipment for drinking water filtering and disinfection and inappropriate technical maintenance, have been constantly present. Therefore, there is high percentage of bacteriologically unsafe (9-25%).

Methodology

Methodology for the indicator calculation

The 10 regional Public Health Institutes – Skopje, Kumanovo, Veles, Shtip, Kochani, Strumica, Prilep, Bitola, Ohrid and Tetovo with their hygiene-epidemiological stations, in cooperation with the Public Health Institute – Skopje, carry out regular and continuous monitoring of drinking water corresponding with the number of measuring points and schedule specified in the Rulebook on drinking water safety (Official Gazette of the Republic of Macedonia No.57/04). Institutes perform

basic physic-chemical and bacteriological analyses of drinking water samples, while the Public Health Institute of the Republic of Macedonia performs monitoring of periodical physic-chemical analysis, analysis of pesticide residues, analyses of contaminants, parasitological and radiological analysis.

Uncertainty

Methodological uncertainty

Data is, generally, representative for the whole urban area in the Republic of Macedonia. The indicator is subject to modifications from year to year, depending on the introduction of new drinking water treatment plants and in line with the enhanced trend of rural population coverage with safe drinking water supply.

Data uncertainty

Data is, generally, representative for the whole urban area in the Republic of Macedonia. Representativeness of monitoring selection is in accordance with the requirements of Directive 98/83/EC.

Policy relevance of the indicator

List of relevant policy documents:

The National Environmental Action Plan - 2 (2006) sets the improvement of the quality of drinking water through reduction of emissions of the main pollutants into surface and groundwaters as its main objective. The same document specifies the primary measure to be applied: to strengthen the processes of drinking water quality monitoring and assessment.

The 1999 National Environmental Health Action Plan (NEHAP) sets two main objectives:

- Reduction and minimization of health risks for the population through provision of drinking water for every citizen, which is safe from health point of view, sufficient in quantity, with guaranteed microbiological, organoleptical and physico-chemical composition, compliant with national standards and WHO Guidelines, as well as waters intended for sports and recreation and healthy food production;
- Reduction of exposure to toxic chemicals through water originating from agriculture and industry.

The NEHAP also sets the following priorities:

- approximation of the legislation on the quality of ambient and drinking waters with the recommendations of the EU (approximation completed in 2004) and with the WHO Guidelines;
- introduction of disincentive prices for non-earmarked consumption of drinking water by commercial and non-commercial users and restrictive prices for the population in circumstances of draught for the purpose of consumption streamlining (implemented under the Law on Drinking Water Supply and Urban Wastewater Collection);
- establishment of sanitary protection zones around water supply sources in order to prevent contamination of anthropogenic origin (permanent process performed and most of the public utilities have established zones in line with the Elaborates for sanitary protection zones developed by the Public Health Institution RIHP and other authorised vocational institutions);
- completion of the process of construction of municipal and industrial wastewater treatment systems;

- monitoring of the quality of surface and groundwaters, especially at drinking water abstraction, places intended for sports and recreation and points for abstraction of water for irrigation, monitoring of discharged untreated and treated municipal and industrial wastewaters in accordance with EU and WHO Guidelines (monitoring is performed regularly and continuously by the Public Health Institute - Skopje and the 10 Regional public health centers with their local units);
- although the pilot project for fluoridation of milk consumed by pre-school children has been initiated, introduction of drinking water fluoridation as the most efficient, the least costly and socially and medically most fair means for massive caries prophylaxis has remained as public health option.

Legal grounds

Law on Health Protection, Law on Waters, Programme for preventive health protection in the Republic of Macedonia, Law on Drinking Water Supply and Urban Wastewater Collection, Decree on Water Classification, which in its Article 2, specifies five classes of surface watercourses, lakes and accumulations and ground water resources.

The Law on Food and Foodstuffs and Materials in Contact with Food, in its Article 4 includes drinking water as food.

Rulebook on drinking water safety (sets frequency of drinking water safety control).

In the Law on Nature Protection, one of the main goals defined in Article 4, item 6 of the Law is the securing of the right of citizens to a healthy environment.

The following EU Directives have been transposed in the new legal acts:

Drinking Water Directive (80/778/EEC) and its amendment (98/83/EC which entered into force in 2003).

Targets

The Rulebook on drinking water safetyspecifies the limit values for the parameters monitored in drinking water in terms of human health protection.

Limit values of concentrations of certain parameters in drinking water

 According to the said Rulebook, limit values have been specified for the purpose of human health protection, harmonized with the EU Directive and WHO Guidelines on the quality of drinking water (2004).

Reporting obligation

European Environmental Agency

 Exchange of data on drinking water quality, based on the Council Decision on the establishment of reciprocal exchange of information and data on drinking water quality (98/83/EC).

World Health Organization - ENHIS

 Drinking water quality, in line with the WHO Guidelines on drinking water quality of 1987 and 2004, respectively.

Code	Title of the indicator	Compliance with CSI/EEAor other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MKNI 039	Drinking water quality	WEU13	Drinking water quality	S	А	Water quality	Annually

MK - NI 040 IRRIGATED LAND

Definition

The indicator tracks the trend in irrigated areas in a given time interval on the whole territory of the Republic of Macedonia, as well as total quantities of consumed water on the entire territory and proportion of irrigated land compared to the total cultivable land area.

Units

• Area of irrigated land (expressed in hectares), quantity of water used for irrigation expressed in cubic meters consumed at annual level, % of irrigated land in the total cultivable land area.

Key policy issue

Is the water abstraction based on water sustainability?

Key message

An uneven trend in water use for land irrigation was observed in the period between 2001 and 2014, due to weather conditions in the given year, as well as to organizational restructuring of the sector. Particular growth in water use for land irrigation was recorded in 2012.

Data is not part of the official statistics published in the country.

Figure 1.Use of water resources

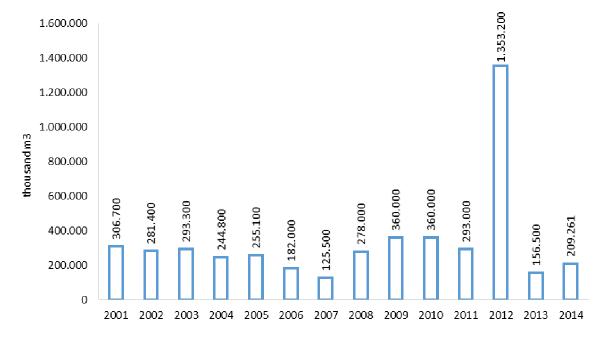


Figure 2. Total area irrigated

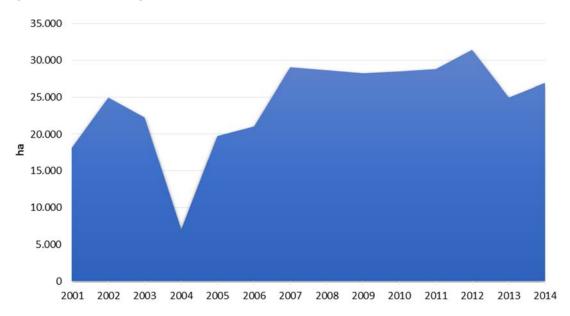
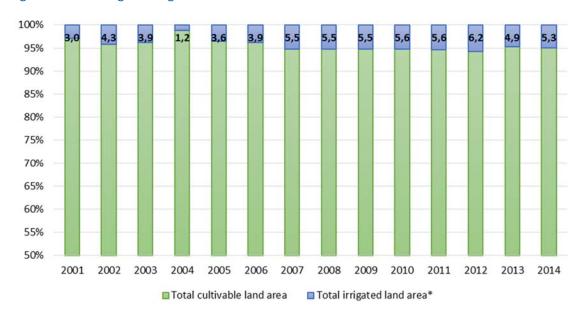



Figure 3. Percentage of irrigated area relative to total cultivated land area

Data coverage: **excel**

Source: State Statistical Office

Assessment

Figure 2 shows the whole irrigated land area for the period 2001-2014, reflecting an uneven trend in water use for land irrigation. There is an evident data that the quantity of water consumed by this sector in 2012 was significantly bigger compared to the entire successive interval. This is due to the fact that 2012 was a dry year, but precipitations were distributed in such a way that enables filling of accumulations with sufficient quantities of water. Figure 3 presents the percentage of irrigated land area compared to the entire cultivable land area in the Republic of Macedonia, showing that the percentage is really low with the average being below 5% for the entire time interval, except in 2012 when higher percentage was recorded, reaching 6.2%.

Methodology

Methodology for the indicator calculation

Data is collected and processed by years.

Policy relevance of the indicator

List of relevant policy documents:

The National Environmental Action Plan - 2 and Environmental Monitoring Strategy and Data Management Strategy.

The policy for sustainable use of water resources based on the Sixth Environmental Action Programme and Framework Water Directive requirements as transposed in the national Law on Waters.

Legal grounds

The Law on Waters provides for integrated approach, specifying the conditions and the manner of waters use and allocation, protection against harmful impacts of water, as well as standards and values for water quality and control of pollution, while taking into account integration of measures and activities for water protection in all development, strategic, planning and programme documents.

The main planning documents for water management planning and development include:

- The National Strategy for Waters
- Water Management Master Plan of the Republic of Macedonia, and
- River basin management plans.

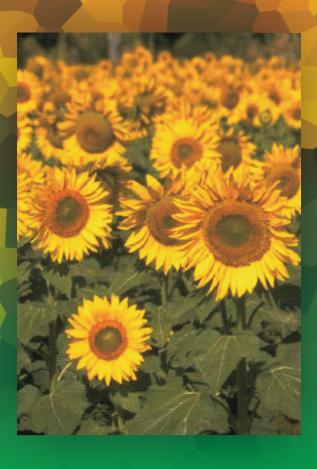
The National Strategy for Waters is aimed at establishing long-term policy to ensure sustainable use of water by meeting the demands of all users with adequate quality water in sufficient quantities, rational and cost-effective consumption of waters, water protection against contamination and contamination control.

The Water Master Plan of the Republic of Macedonia provides for integrated planning and implementation of programmes and measures, technical and economic solutions for rational water use, protection of waters against contamination and protection against harmful impacts of water, based on the principles of sustainable development and the timeframe for their implementation.

The River Basins Management Plans enable maintenance and improvement of water regime. Such Planscontainthe environmental protection goals, good status of surface water bodies (good quantitative status and chemical status, including good ecological potential) and ground water resources (good quantitative status and chemical status).

Use of water for different purposes is specified under the Decree on Water Classification, according to which water is divided into five different classes based on the level of pollution, while water characteristics are determined on the basis of classes and purposes for which water can be used.

Targets


No specific targets.

Reporting obligation

OECD/EUROSTAT

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MKNI 040	Irrigated land	WQ4	Irrigated land	D	Α	Water	Annually

MK - NI 08 MINERAL FERTILIZER CONSUMPTION

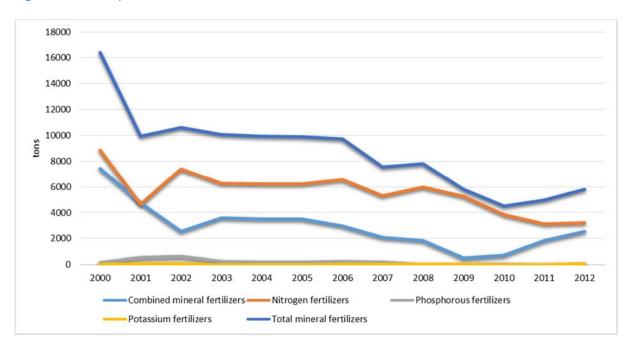
Definition

Mineral fertilizers are substances containing chemical elements required for plants growth, especially nitrogen, phosphorus and potassium.

This indicator shows the consumption of mineral fertilizers in the Republic of Macedonia, by presenting total amounts in tonnes consumed substances, and their application per hectare cultivated land area.

Units

Tones,kg/ha.


Key policy issue

What is the trend in the amount of used mineral fertilizers in agriculture?

Key message

Mineral fertilizer consumption in agriculture noted a falling trend in the period from 2000 to 2012. The overall mineral fertilizers consumption reduced by 64.61%. Consumption of nitrogen mineral fertilizers dropped by 63.77%. Consumption of phosphorous fertilizers dropped by 77.01%. Consumption of combined mineral fertilizers dropped by 93.26% between 2000 and 2009, while in the period from 2009 to 2012 there was gradual increase by 11.82%. Consumption of potassium fertilizers showed periodical trends of reduction and increase, so that consumption in 2012 increased by 100% compared to 2011. Consumption of mineral fertilizers on cultivated land area (kg/ha) by agricultural companies and agricultural cooperatives during the observed period showed periodical trends of reduction and increase.

Figure 1. Consumption of mineral fertilizers

kg/ha

Figure 2. Use of mineral fertilizers on cultivated land area (kg/ha)by agricultural cooperatives and agricultural companies)

Data coverage: **excel**

Source: Statistical Yearbooks, State Statistical Office

Assessment

In the observed period, consumption of mineral fertilizers in agriculture dropped from 16.16 tons to 5.809 tons of fertilizers. The quantity of mineral fertilizers used on cultivated land area (of agricultural companies and cooperatives) expressed in kilograms per hectare, during the observed period showed periodical trends of increase and decrease. In 2004, with 77.74 kg/ha, consumption of mineral fertilizers was the lowest, while in 2006 with 147.24 kg/ha it was the highest.

It is difficult to connect the trend in reduction in mineral fertilizers consumption directly with the impact on the quality of the environment. The ultimate effect on the quality of environment depends to a great extent on other factors, such as use of organic fertilizer, yield from crops, soil types, management of agricultural farms, etc.

Methodology

Methodology for the indicator calculation

Consumption of individual groups of mineral fertilizers as combined mineral fertilizers, nitrogen fertilizers, phosphorous fertilizers, potassium fertilizers, as well as total mineral fertilizers per hectare utilized agricultural area is obtained by dividing the total quantity of consumed group of mineral fertilizers in kg by the total utilized agricultural area presented in ha.

Policy relevance of the indicator

List of relevant policy documents:

The Second National Environmental Action Plan (NEAP 2) specifies the measure for rationale use of natural resources, as well as controlled use of mineral fertilizers. The same document also specifies the measure for establishment of monitoring and information system for soil, to monitor the mineral fertilizers consumption.

Legal grounds

The Law on Agricultural Landspecifies the measures for improved agricultural land fertility through undertaking of agrotechnical measures, one of them being fertilizers application, i.e. use of mineral fertilizers. It is specified that agriculturallandprotection against pollution and contamination is performed by prohibition, restriction and prevention of direct input of harmful matters in soil, input of harmful matters through water and air and undertaking of other measures for its productivity maintenance and improvement. It is also specified that, for the purpose of agricultural land protection against pollution and contamination, the provisions contained in the regulations on environment and nature protection and improvement shall apply accordingly.

The Law on Fertilizers Use regulates the manner of fertilizers use.

The Law on Nature Protection, in its Article 4, specifies the goals of protection, including preservation and recovery of existing biological and landscape diversity in a state of natural balance and prevention of harmful activities and nature disruption.

Targets

No specific targets.

Reporting obligation

No reporting obligation

Code	Title of the indicator	Compliancewith CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MKNI 08	Mineral fertilizer consumption	IRENA 08	Mineral fertilizer consumption	D		Agriculture Soil Water	Annually

MK - NI 09

CONSUMPTION OF PESTICIDES

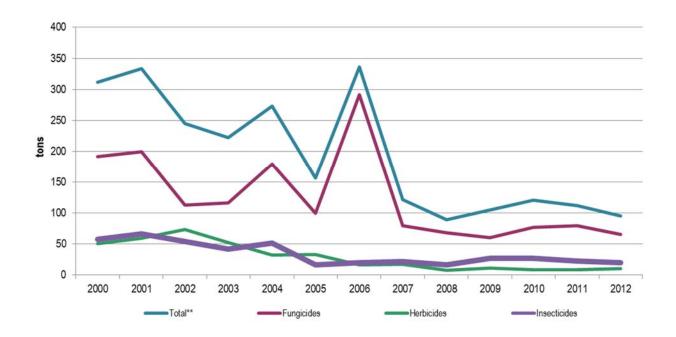
Definition

Plants protection products or pesticides are chemical substances which restrain diseases and pests in plants. This indicator shows the quantities of pesticides used for plants protection, such as fungicides, herbicides, insecticides and category of total including, apart from the mentioned ones, other plant protection products.

Units

 Total quantities of used substances in tones, share of different groups of pesticides, as well as their application per hectare utilized agricultural area (kg/ha).

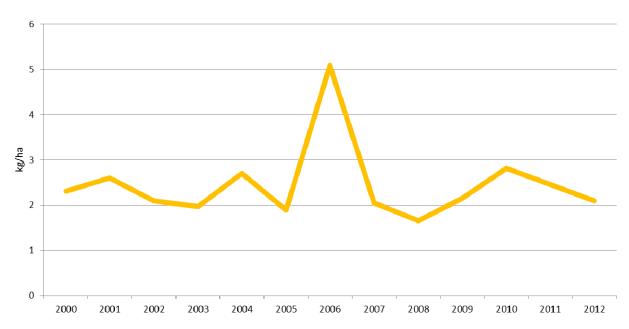
Key policy issue


Has the use of pesticides in agriculture increased in quantity?

Key message

Application of pesticides in agriculture, including all plant protection products, like fungicides, herbicides, insecticides and total quantity showed a trend of reduction in quantity consumed in the period between 2000 and 2005, sharp increase in 2006 and then decrease again by 2012.

The application of fungicides from 2000 to 2006 showed trend of variation of reductions and increases, in the period from 2006 to 2012 it reduced by 77.66%. Application of herbicides also showed a trend of reduction from 2000 to 2006, while from 2006 to 2012 the overall use of pesticides in agriculture reduced by 71.72%.


Figure 1. Use of plant protection products

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 2002 2003 2005 2006 2007 2008 2009 2000 2001 2004 2010 2011 2012 ■ Fungicides ■ Insecticides ■ Herbicides

Figure 2. Share of plant protection products in percentage

Figure 3. Total plant protection products used on the total cultivable land (kg/ha) (from agricultural companies and agricultural cooperatives)

Data coverage: **exce**

Source: Statistical Yearbooks, State Statistical Office

Assessment

In the period 2000 to 2006, use of pesticides in agriculture showed variations of reduction and increase in the period from 2006 to 2012 it dropped from 336 to 95 tons. With regard to the share of plant protection products, in the period 2000 to 2012, fungicides noted highest share. In 2012, fungicides were the most used with 68.42%, then insecticides with 21% and herbicides with

10.52%.

The total amount of plant protection products used on the total cultivable land in agricultural companies and agricultural cooperatives expressed in kg/ha, from 2006 when consumption was the highest, to 2012 reduced from 5.08 to 2.09 kg/ha, which is a reduction by 58.85 %.

Methodology

Methodology for the indicator calculation

The share of different pesticide groups as fungicides, herbicides and insecticides is obtained when the quantity of each group is divided by the total quantity of consumed pesticides, and then the value obtained is multiplied by 100. The application of individual group per hectare utilized agricultural area is obtained when the total quantity of consumed pesticides expressed in kg is divided by the total utilized agricultural area (agricultural companies and agricultural cooperatives) in the Republic of Macedonia expressed in ha.

Policy relevance of the indicator

List of relevant policy documents:

The Second National Environmental Action Plan (NEAP 2) specifies the measure for rationale use of natural resources, as well as controlled use of pesticides, i.e. plant protection products. The same document also specifies the measure for establishment of monitoring and information system for soil, to monitor the pesticides consumption.

Legal grounds

The Law on Agricultural Land specifies the measures for improved agricultural land fertility through undertaking of agro-technical measures, hydro-amelioration, agramelioration and anti-errosion measures.

The Law on Nature Protection specifies the goals of protection, including preservation and recovery of existing biological and landscape diversity in a state of natural balance and prevention of harmful activities and nature disruption.

The Law on Plants Protection regulates the protection of plants against diseases, pests and weeds, as well as use of plant protection products.

The Law on Plant Protection Products regulates approval, placement on the market, use and control of active substances that are products; maximum level of residues, equipment for products application; exchange of information related to products, products production, records keeping of legal and natural persons involved in production and placement of products on the market, conditions for authorization by authorities responsible for implementation, monitoring and control of this law.

The Law on Plant Health regulates the health of plants, measures and obligations concerning occurrence of harmful organisms in plants, plant products and other articles and objects, prevention of their inlet and spread, measures for control, biological measures for plant protection, access to and exchange of information and information system, costs and compensations, responsibilities of competent authorities, authorized services, authorities and bodies in the area of plants health and it also regulates other issues in the area of plants health.

Targets

No specific targets.

Reporting obligation

None

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MKNI 09	Consumption of pesticides	IRENA 09	Consumption of pesticides	D		Agriculture	Annually

MK - NI 025

GROSS NUTRIENT BALANCES

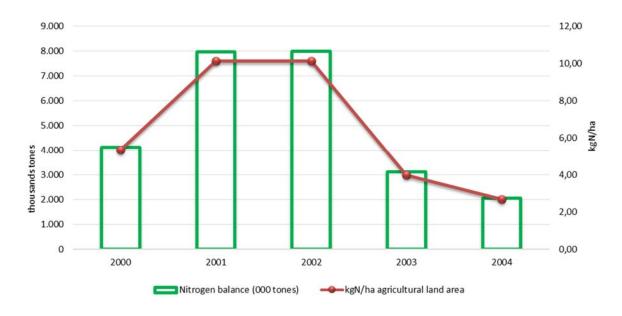
Definition

The nutrient balance or nitrogen balance establishes the link between nutrients used in agriculture and changes in the quality of the environment, in order to achieve sustainable use of soil nutrients in terms of their input and output.

The indicator estimates the potential surplus of nitrogen on agricultural land. This is done by calculating the balance between nitrogen added to a hectare agricultural land. The indicator accounts for all inputs to and outputs from the farm. The inputs consist of the amount of nitrogen applied via mineral fertilisers and animal manure as well as nitrogen fixation by legumes, deposition from the air, and some other minor sources. Nitrogen output is contained in the harvested crops, or grass and crops eaten by livestock. Uncontrolled escape of nitrogen to the atmosphere, e.g. as N_2O from agriculture is difficult to estimate and therefore not taken into account.

Units

The gross nitrogen balance is expressed in (kgN/year) per hectare (ha).


Key policy issue

Has the impact of agriculture on the environment improved?

Key message

In the period from 2000 to 2001, significant rise in gross nitrogen balance was tracked, followed by a period of stagnation, to note rapid drop in the period from 2002 to 2003 and further slight fall in the gross nitrogen balance expressed both in thousand tones and kilograms nitrogen per hectare agricultural land (kgN/ha). Constant suficit in nitrogen balance indicates potential environmental problems, while constant deficit indicates potential risk of reduced nutrients in the soil.

Figure 1 Gross nitrogen balance expressed in thousand tones and kgN/ha agricultural land area

Data coverage: **excel**

Source: Statistical Yearbook, State Statistical Office, Calculation of the gross nitrogen balance was made by the Faculty of Agricultural Science and Food, University of "St. Cyril and Methodius", Skopje

Methodology

Methodology for the indicator calculation

Methodology for the indicator calculation has been taken from OECD/Eurostat national nutrient balances, which takes into account all input and output matters in the farm.

Input nitrogen matters consist of:

- 1. Total amount of applied fertilizers
 - Inorganic fertilizers
 - Organic fertilizers (manure excluded)
- 2. Manure
- 3. Nitrogen fixation by legumes
- 4. Deposition from the air
- 5. Other minor sources (semen and other reproductive material)

Output nitrogen matters include:

- 1. Harvested crops placed on the market, including also forage crops
- 2. Grass and crops eaten by livestock

Uncontrolled escape of nitrogen to the atmosphere in a form of N_2O from agriculture is difficult to estimate and therefore not taken into account.

Source of applied methodology

OECD/Eurostat Gross Nitrogen Balances Handbook (12/2003)

Uncertainty

Methodological uncertainty

Data used in the calculation of this indicator has been partially based on estimates by experts, using harmonized methodology which might not always reflect specific circumstances in our country. Certain coefficients used in calculations differ significantly from country to country. Data on nitrogen input is considered more adequate and more comprehensive than on the output. Uncertainty is present with regard to harvested forage crops, as well as grass crops eaten by livestock.

Based on the above, data on gross nitrogen balance in our country should be taken with certain extent of precaution.

Uncertainty of data sets

Data on the amounts of applied manure are accompanied by certain extent of uncertainty, and statistical data on semen and other reproductive material, as well as data on grass crops eaten by livestock, i.e. those that are not placed on the market, should be taken by certain extent of uncertainty, too.

Policy relevance of the indicator

The gross nitrogen balance is an issue regulated by the Framework Law on Waters, incorporating the requirements of Nitrates Directive (91/676/EC) and Framework Water

Directive (2000/60/EC). The Nitrates Directive is aimed at reducing and preventing in future the water pollution by nitrates from agricultural sources. This Directive restricts the application of manure at 170 kg N/ha/year. The goal of the Framework Water Directive is the achievement of good ecological status of surface and ground waters in terms of quality of biological communities, hydrological characteristics and chemical characteristics.

List of relevant policy documents

The National Environmental Action Plan 2 (NEAP 2) specifies the measures for ratinal use of natural resources, as well as controlled use of pesticides, i.e. plant protection products, as well as the measure for establishment of soil monitoring and information system to monitor the status of pesticides consumption.

Legal grounds

The Law on Agricultural Land specifies the measures for improved agricultural land fertility through undertaking of agro-technical measures, hydro-amelioration, agramelioration and anti-errosion measures. It also prescribes that for the purpose of protection of agricultural land against pollution and contamination, the provisions contained in the regulations on environment and nature protection and improvement shall apply accordingly.

The Law on Nature Protection, in its Article 4, specifies the goals of protection, including preservation and recovery of existing biological and landscape diversity in a state of natural balance and prevention of harmful activities and nature disruption.

The Law on Environment, in its Article 8, promotes the principle of sustainable development, meaning that, when undertaking or performing any activity, rationale and sustainable use of natural resources shall be taken into account, thus meeting the needs for healthy environment, as well as social and economic needs of present generations, without jeopardizing the rights of future generations to meet their own needs.

Targets

No specific targets.

Reporting obligation

EEA

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 025	Gross nitrogen balance	CSI 025	Gross nutrient balance	Р	Α	agriculturewater	3 - annually

MK - NI 026

AREAS UNDER ORGANIC FARMING

Definition

The indicator is calculated as share (percentage) of area under organic farming (sum of existing areas under organic farming and areas in a process of conversion for organic farming) in the total area or total cultivable land area.

Units

The indicator is presented as sum of area under organic farming and area being converted for organic farming, measured in ha. Share of organic farming is given as a percentage of total utilized agricultural area.

Key policy issue

Whether the share of organic cultivable area in the total cultivable area is in increase?

Key message

In the period from 2005 to 2011, the organic agricultural production area and the number of organic operators is in constant increase, but in the period 2012 to 2014 the trend decreased, to be followed by slight increase again in 2015. In the period from 2005 to 2011, the organic agricultural production area increased from 592.54 to 6.580,92 ha, in 2012 there was drop to 4.663.08 hectares, and in 2015 it dropped to 2.888.06 hectares.

The share of organic farming in the overall cultivable land area had significant increase, namely from 0.109% in 2005 raised to 1.288% in 2011. The highest share of organic farming in the overall cultivable land area was observed in 2011. Compared to 2011, the share noted drop in 2012 by 29% and 56.3% in 2015.

The number of certified organic operators increased from 50 in 2005 to 780 in 2011. In 2014, the biggest drop was recorded and the number of certified operators was 344, to rise again in 2015 to 481 operators.

Figure 1. Area under organic agricultural production

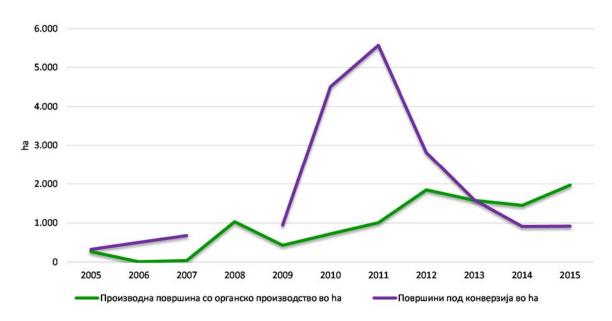


Figure 2. Share of area under organic agricultural production in cultivable and total agricultural area.

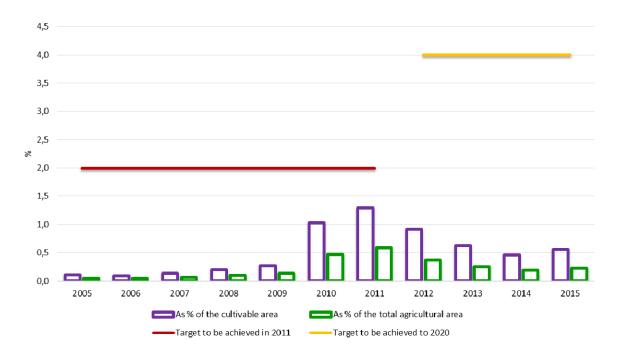
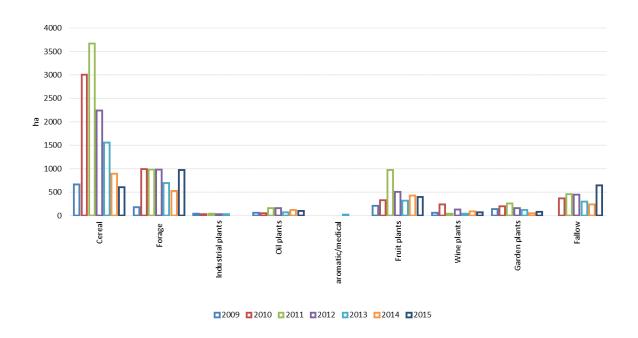



Figure 3.Organic vegetable production in ha

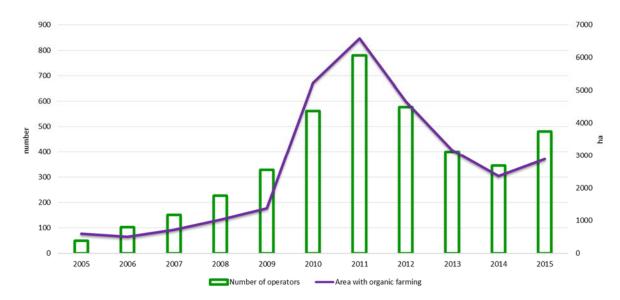


Figure 4. Ratio between the number of operators and the area under organic agricultural production

Data coverage: **exce**

Source: Statistical Yearbook, State Statistical Office, Ministry of Agriculture, Forestry and Water Economy, Division of Organic farming.

Assessment

In the period from 2005 to 2011, the production areas with organic farming have increased from 266ha to 1007.26ha subsequently. There is also an increase in areas under conversion from 327 to 5.573.66 ha, the trend in 2012 showed reduction compared to 2011 in areas under conversion from 5.573.66 hectares to 2.817.02 hectares, and in 2015 to 2.888.06 hectares.

The share of organic farming areas in the total cultivable area grew from 0.109% in 2005 to 1.288% in 2011, while in 2012 the share dropped and amounted 0.914%; negative trend continued in the period up to 2014. In 2015, the share of organic farming areas in the total cultivable area increased to reach 0.563% which was a drop by 56.3% compared to 2011 when the share was highest. .

The share of organic farming areas in the total cultivable area was insignificant given that, according to the National Plan for Organic Production 2013-2020, the target of 4 % share of organic cultivable area should be achieved in Macedonia by 2020.

It can be noted from Figure 3 that forage was the main organic crop in Macedonia in 2015, with share of 33.84%, followed by tillage with 22.23% share, while the vineyard crops had the lowest share with 2.64% of the overall certified areas.

The number of certified organic operators in the period from 2005 to 2011 grew proportionally with the growth of the area under organic agricultural farming (figure 4), and dropped in the period from 2012 to 2014, to rise slightly again in 2015.

Methodology

The method of the European Environmental Agency.

The indicator is presented as sum of area under organic farming and area being converted for organic farming, divided by the total cultivable land area or total agricultural area. This value is multiplied by 100 in order to present the value in percentage.

Policy relevance of the indicator

List of relevant political documents

- National strategy with action plan for development of organic farming in the Republic of Macedonia 2008-2011
- Strategy for agriculture and rural development condition and need to establish agroenvironmental policy.
- The Strategy for compliance of the Macedonian agricultural and food sector with the EU Common agricultural policy – indicates the need to identify the regions suitable for organic farming and to comply with the European regulations.
- The Treaty with the World Trade Organization improvement of the international food safety standards
- The Second National Environmental Action Plan strives to include environmental issues directly in the agricultural development policy and to maintain the natural resources needed for sustainable development on high level. In accordance with this, a control and certification body for organic agricultural production, recognized by the EU has been defined and established.
- National strategy for biodiversity with Action Plan
- National strategy for sustainable development

Legal grounds

The framework for the organic farming is established by the Law on Organic Farming and regulations which are in a process of adoption; the Law on Stimulating Agriculture Development, Law on Environment and Law on Nature Protection.

The provisions of this Law have been harmonized with international and European ones, especially with EU Regulation No.2092/91, which is of particular importance in the context of future development of trade exchange in organic products with European countries.

Targets

In 2011, the organic cultivable land has a 2% share in the total cultivable land in Macedonia. In 2011, while the wild collection area has a share of 5% in the total cultivable area in Macedonia.

Reporting responsibilities

- Annual report for quality of the environment in the Republic of Macedonia
- Environmental statistics
- European Environment Agency

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Type	Linkage with area	Frequency of publication
MKNI 026	Area under organic farming	CSI 026 IRENA 07	Area under organic farming	R	Α	agriculture biological diversity	Annually

ENERGY

FINAL ENERGY CONSUMPTION BY SECTOR

Definition

Final energy consumption is energy supplied to meet the demand of the final consumers and is calculated as the sum of final energy consumption from all sectors, namely industry, transport, agriculture, households, and other sectors.

The indicator "Final energy consumption by sector" is expressed in thousand tonnes of oil equivalent (ktoe) and in percentage as a ratio between final energy consumption by each sector and final energy consumption by all sectors.

Units

- thousand tonnes of oil equivalent (ktoe)
- percentage (%)

Key question

Is final energy consumption increasing and in which sector it is the highest?

Key message

Policies in energy sector should favour measures aimed at rational and efficient energy consumption, especially by households and industry.

During the period between 2000 and 2014, final energy consumption in the Republic of Macedonia increased by 7.96%, with an annual average rate of 6.26%. Non-energy consumption is the sector with the most rapid growth in energy consumption noting an increase by 982%. During the same period, final energy consumption in transport increased by around 47.46%, while final energy consumption in industry decreased by 3.7%. Significant fall in final energy consumption was recorded in the sector agriculture (-62.07%) and households (-6.25%).

The highest share in the total final energy consumption was recorded in the sectors industry with 29.7% and transport with 31.1%.

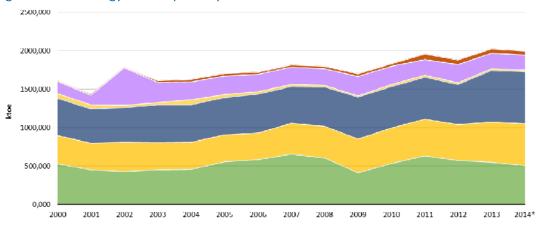


Figure 1. Final energy consumption by sector

Industry = Transport = Households = Commercial and public services = Agriculture, forestry and fishery = Non-specified = Non-energy use

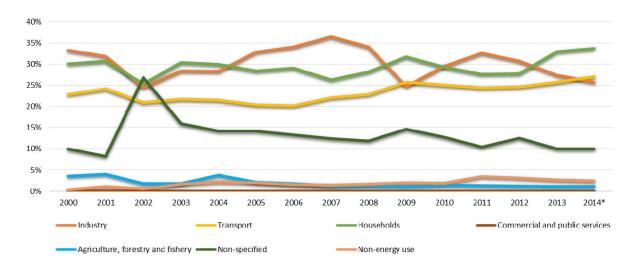


Figure 2. Share of individual sectors in final energy consumption

Data coverage: **exce**

Source: State Statistical Office

Assessment

Final energy consumption in the Republic of Macedonia correlates closely with the dynamics of industrial production, due to the high share of industry in the total energy consumption.

In the period between 2000 and 2014, final energy consumption in the Republic of Macedonia increased by 7.96%, with an annual average rate of 6.26%. Non-energy consumption is the sector with the most rapid growth in energy consumption noting an increase by 982%.

Analysis of data on final energy consumption in 2009 indicates fall in industry as a result of economic crisis, and the biggest increase in industry sector was recorded in 2007.

During the same period, final energy consumption in transport noted constant growth and increased by around 47.46%. Final energy consumption in households decreased by -6.25% in the period 2000 to 2014, but significant increase was recorded in 2011.

Significant fall in final energy consumption was recorded in the sector agriculture (-62.07%), with highest consumtion in 2004, and then in the period 2005 to 2014 there was constant fall in consumtion.

The highest share in the total final energy consumption in 2014 was recorded in the sectors industry with 29.7% and transport with 31.3%, followed by households (26.2%), other sectors (11.5%), non-energy consumtion (2.9%) and agriculture (1.2%).

Methodology

Methodology for the indicator calculation

Statistical methodology for calculation:

- Regulation on Energy Statistics of the European Parliament and of the Council (Regulation no.1099/2008).
- "Energy Statistics Methodology Eurostat F4, 1998"
- National classification of activities, Rev.2 (Official Gazette of the Republic of Macedonia no. 147/2008)

Policy relevance of the indicator

- Strategy for Energy Efficiency Promotion in the Republic of Macedonia by 2020¹
- Strategy for Energy Development in the Republic of Maceodnia by 2030.²

Legal grounds

Law on Energy; Energy Balance of the Republic of Macedonia - annual planning document defining the demands for energy and the possibility for their supply .

Reporting obligation

- Eurostat
- ECE/UN
- IEA/OECD

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 027	Final energy consumption by sector	CSI 027 ENER 016	Final energy consumption by sector and fuel	D	А	Energy	annualy

¹ http://www.konkurentnost.mk/StrateskiDokumenti/StrategijazaunapreduvanjenaEERMdo2020godina.pdf

 $^{^2\} http://www.build.mk/docs/users/cloverstack/Strategija\%20za\%20razvoj\%20na\%20energetikata\%202008-2020\%20so\%20vizija\%20do\%202030.pdf$

TOTAL ENERGY INTENSITY

Definition

Total energy intensity is the ratio between the total energy demand (or total energy consumption) and the Gross Domestic Product.

The total energy consumption is calculated as the sum of the total energy demand from solid fuels, oil, natural gas and renewable sources.

The Gross Domestic Product (GDP) is converted by the Price Adjusted Rate of Exchange (PARE) method, applying the OUN Methodology (2000 database).

The total energy demanded (or total energy consumption) is expressed in thousand tonnes oil equivalent, and Gross Domestic Product in million EUR.

The indicator "Total energy intensity" is expressed in kilograms oil equivalent per 1000 EUR (kgoe/1000 EUR).

The indicator is also calculated in indexes with 2000 as base year (2000=100).

Units

- million EUR
- thousand tonnes oil equivalent (ktoe)
- kilograms oil equivalent (kgoe)
- indexes (2000=100)

Key question

What will be the dynamics of strategic targets implementation and achievement?

Key message

The trend in Energy intensity in the Republic of Macedonia recorded decline by 54.4% in 2014 compared to 2000, mainly due to the trend of growth in GDP for the same past period amounting 108.3%. The biggest decline in energy intensity compared to previous year, amounting 15.23% was recorded in 2013 relative to 2012, and the biggest increase of 5.5% was noted in 2002 relative to 2001.

220 200 180 160 140 index 120 100 80 60 40 20 2000 2001 2003 2004 2005 2006 2007 2010 **GDP** Total energy consumption Total energy intensity

Figure 1. Total energy intensity

Data coverage: **excel**

Source: State Statistical Office

Assessment

Constant change in the trend of total energy intensity was notable in the period from 2000 to 2014 at an average rate of decline of 5.33%. The trend of decline by 54.4% of total energy intensity in 2013 compared to 2000 was specific, mainly due to the growth of GDP for the same past period reaching 108.3%.

The biggest decline in energy intensity compared to previous year, by 15.23%, was recorded in 2013 relative to 2012, and the biggest growth by 5.51% was noted in 2002 relative to 2001.

The presented time series shows a favourable downward trend of energy intensity.

Comparative analysis of energy consumption relative to GDP, so called indicator of energy intensity, has shown that the Republic of Macedonia belongs to the group of countries with relatively high energy consumption levels, due to the high energy intensity of the facilities that lead the economic growth. Also, due to the long-lasting treatment of the electricity price as a social category, the residential sector uses significant quantities of electricity for heating.

Methodology

Methodology for the indicator calculation

Statistical methodology for calculation:

- Regulation on Energy Statistics of the European Parliament and of the Council (Regulation no.1099/2008),
- "Energy Statistics Methodology Eurostat F4, 1998"
- National classification of activities NCA Rev.2 (Official Gazette of the Republic of Macedonia no. 147/2008).

Policy relevance of the indicator

List of relevant policy documents:

- Strategy for Energy Efficiency Promotion in the Republic of Macedonia by 2020¹
- Strategy for Energy Development in the Republic of Maceodnia by 2030²

Legal grounds

Law on Energy; Energy Balance of the Republic of Macedonia - annual planning document defining the demands for energy and the possibility for their supply (Article 16 of the Law on Energy).

Targets

Target to be achieved in EU is spending tonnes oil equivalent per 1.000 US\$ GDP, while the target in the Republic of Macedonia is 0,75 tonnes oil equivalent. The implementation of measures under the Strategy for Energy Efficiency Promotion, this should drop down to 0,45 to 0,49 into 2020.

Reporting obligation

- Eurostat
- ECE/UN
- IEA/OECD

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 028	Total energy intensity	CSI 028 ENER 017	Energy intensity	R	В	energy	annualy

¹ http://www.konkurentnost.mk/StrateskiDokumenti/StrategijazaunapreduvanjenaEERMdo2020godina.pdf

 $^{^2\} http://www.build.mk/docs/users/cloverstack/Strategija\%20za\%20razvoj\%20na\%20energetikata\%202008-2020\%20so\%20vizija\%20do\%202030.pdf$

TOTAL ENERGY CONSUMPTION BY FUEL

Definition

Total energy consumption or gross inland consumption represents the total quantity of energy necessary to satisfy the total national needs for energy for energy transformations, all types of consumption by energy sector and final energy and non-energy consumption.

The total energy consumption is calculated as sum of the total energy consumption originating from solid fuels, oil, natural gas and renewable sources.

The indicator "Total energy consumption by fuel" is expressed in thousand tonnes of oil equivalent (ktoe) and in percentage as ratio between the total energy consumption per fuel and the total energy consumption of all fuels.

Units

- thousand tonnes of oil equivalent (ktoe)
- percentage (%)

Key question

What are the trends conserning the share of fuels in the total energy consumption?

Key message

In the period between 2000 and 2014, the total energy consumption by fuel decreased by 4.94%. The highest share in the total energy consumption belongs to solid fuels ranging from 40.9% to 58%. For the period 2000 to 2014, there was significant increase in the amounts of natural gas used as one of the fuels with cleaner ecological footprint, noting increase by 107.5%. Use of oil shows obviously constant values, except in 2002 (1173 ktoe) and 2007 (1042 ktoe), when increase in the use of oil was recorded.

Significant change in the trend of solid fuels use and gradual structural saubstitution with cleaner or renewable energy sources is necessary.

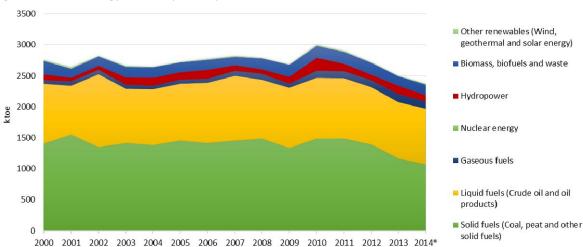


Figure 1. Total energy consumption by fuel

120% 100% Other renewables (Wind. geothermal and solar energy) ■ Biomass, biofuels and waste 80% Hydropower 60% Nuclear energy 40% ■ Gaseous fuels 20% Liquid fuels (Crude oil and oil products) ■ Solid fuels (Coal, peat and other 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014* solid fuels)

Figure 2. Share by fuel in the total energy consumption

Data coverage: **excel**

Source: State Statistical Office

Assessment

In tha past period, dominant energy sources in the Republic of Macedonia included solid fuels, oil and oil derivatives. The share of solid fuels in the total energy consumption for the period between 2000 and 2014 was significantly higher compared to other energy sources ranging from 40.9% to 58%. Also, the share of liquid fuels in the total energy consumption was rather significant and ranged between 29.5% and 40.6%. Reduction of ecological footprint of electricity production in thermal power plants fueld by low calorific coal – lignite is among the greatest challenges in the attempt to reduce the effects of gas emissions in the production process.

Renewable energy sources have negligible share in the total energy consumption ranging from 7.8% to 14.6%, except for wood which is mostly used in individual households without adequate filters for combustion gas emissions.

Increase in the share of renewable energy sources in total energy consumption would be at the same time a possibility for economy restructuring in several sectors, energy efficiency in households and industry, as well as jobs creation.

Methodology

Methodology for the indicator calculation

Statistical methodology for calculation:

- Regulation on Energy Statistics of the European Parliament and of the Council (Regulation no.1099/2008),
- "Energy Statistics Methodology Eurostat F4, 1998"

Policy relevance of the indicator

- National Strategy for Sustainable Development in the Republic of Macedonia 2009 2030¹
- Strategy for Energy Efficiency Promotion in the Republic of Macedonia by 2020²
- Strategy for Energy Development in the Republic of Maceodnia by 2030³

 $^{^{1}\} http://www.moepp.gov.mk/wp-content/uploads/2014/12/Nacionalna-Strategija-za-Odrzliv-Razvoj-vo-RM-NSSD-Del-1.pdf$

 $^{^2}$ http://www.konkurentnost.mk/StrateskiDokumenti/StrategijazaunapreduvanjenaEERMdo2020godina.pdf

Legal grounds

Law on Energy; Energy Balance of the Republic of Macedonia - annual planning document defining the demands for energy and the possibility for their supply (Article 16 of the Law on Energy).

Targets

- Reduction in the dependence on imported fuels and reduction in inefficient energy consumption;
- Modernization of energy infrastructure and diversification of energy supply (extension of the network for natural gas is an important essential element for the implementation of all measures envisaged towards energy efficiency);
- Participation in of regional cooperation and compliance with the legislation of the Energy Community.

Reporting obligation

- Eurostat
- ECE/UN
- IEA/OECD

Code	Title of the indicator		e with CSI/EEA or r indicators	Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 029	Total energy consumption by fuel	CSI 029 ENER 026	Primary energy consumption by fuel	D	Α	energy	annualy

 $^{^3 \} http://www.build.mk/docs/users/cloverstack/Strategija\%20za\%20razvoj\%20na\%20energetikata\%202008-2020\%20so\%20vizija\%20do\%202030.pdf$

RENEWABLE ENERGY CONSUMPTION

Definition

Renewable energy sources are defined as renewable non-fossil energy sources: hydropower, geothermal, solar and wind power; solid biomass; biogas, liquid biofuels, etc.

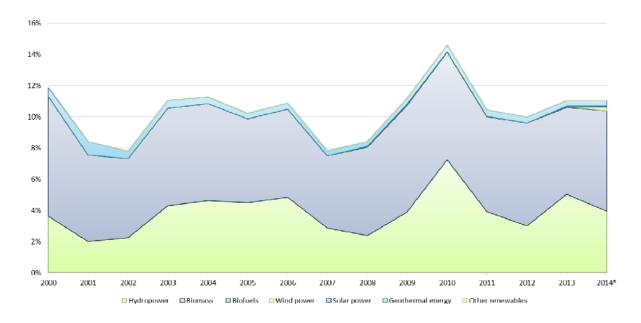
The indicator "Renewable energy consumption" is expressed as ratio of total renewable energy consumption and the total energy consumption originating from all fuels (in percentage).

Units

- thousand tonnes of oil equivalent (ktoe)
- percentage (%)

Key question

How fast is the share of renewable energy in the total energy consumption?


Key message

Policies in energy sector should favour measures for greater use of renewable energy sources.

Relatively low share of renewable energy in the total energy consumption (10.4% at an average) indicates dominant use of fossile fuels which is unfavourable in terms of both depletion of energy resources and environmental pollution.

Biomass has the highest share of renewable energy in the total energy consumption and ranges from 4.6% to 7.7%, while the lowest share belongs to solar electric energy ranging between 0.0001% and 0.047%. Hydro electricity has a share in the range between 2 and 7.3%.

Figure 1. Share of renewable energy in the total energy consumption by energy source (%)

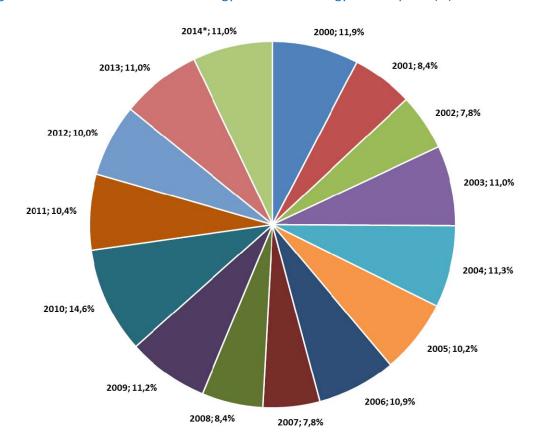


Figure 2. Total share of renewable energy in the total energy consumption (%)

Data coverage: **excel**

Source: State Statistical Office

Assessment

Relatively low share of renewable energy in the total energy consumption (10.4% at an average) indicates the dominant use of fossile fuels which is unfavorable in terms of both energy resources depletion and environment pollution. The highest share of renewable energy in the total energy consumption was recorded in 2010 with 14.6%, and the lowest one of 7.8% in 2002 and 2007.

During the reporting period, the trend of renewable energy share in the total energy consumption was variable. In the period from 2000 to 2002, there was a drop by 34.6%, and from 2002 to 2006 there was a growth by 39.6% in the share of renewable energy in the total energy consumption, followed by decline in 2007 by 28%, and then growth again in the period from 2008 to 2010 of 73.5%, and significant decline in the period from 2011 to 2014 amounting 24.6%.

Biomass has the highest share of renewable energy share in the total energy consumption and ranges from 4.6% to 7.7%, while the lowest share belongs to solar electric energy ranging from 0.0001% to 0.047%. Hydro electricity has a share in the range between 2% and 7.3%.

The minimal share of renewable energy sources in the share of the total energy production and consumption in the Republic of Macedonia indicates that the available resources (e.g.geothermal, hydro, solar power) are insufficiently utilized, but also the aspects of energy security, in terms of all steps that need to be undertaken by the state to prevent threats in relation to planned demands for energy by the national economy. Energy security or threat to economy and social welfare the factors of which are minimized with reduction of dependence on energy and energy resources import, indicate the importance of social resources streamlining towards maximum utilization of natural renewable sources.

Methodology

Methodology for the indicator calculation

Statistical methodology for calculation:

- Regulation on Energy Statistics of the European Parliament and of the Council (Regulation no.1099/2008),
- "Energy Statistics Methodology Eurostat F4, 1998"

Policy relevance of the indicator

- Strategy for Energy Efficiency in the Republic of Macedonia by 2020¹
- Strategy for Energy Development in the Republic of Maceodnia by 2030²
- Strategy for Utilization of Renewable Energy Sources (RES) in the Republic of Macedonia by 2020³

Legal grounds

Law on Energy; Energy Balance of the Republic of Macedonia - annual planning document defining the demands for energy and the possibility for their supply (Article 16 of the Law on Energy).

Targets

Reduction in the dependence on imported fuels and reduction in inefficient energy consumption; Modernization of energy infrastructure and diversification of energy supply; Participation in of regional cooperation and compliance with the legislation of the Energy

Participation in of regional cooperation and compliance with the legislation of the Energy Community.

Reporting obligation

- Eurostat
- ECE/UN
- IEA/OECD

Code	Title of the indicator		ce with CSI/EEA er indicators	Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 030	Renewable energy consumption	CSI 030 ENER 029	Renewable energy in gross inland energy consumption	R	В	energy	annualy

¹ http://www.konkurentnost.mk/StrateskiDokumenti/StrategijazaunapreduvanjenaEERMdo2020godina.pdf

 $^{^2\} http://www.build.mk/docs/users/cloverstack/Strategija\%20za\%20razvoj\%20na\%20energetikata\%202008-2020\%20so\%20vizija\%20do\%202030.pdf$

³ http://www.economy.gov.mk/dokumenti/strategii/3102.html

*MK - NI 031*RENEWABLE ELECTRICITY

Definition

Renewable electricity sources are defined as renewable non-fossil sources of energy, such as: hydropower, geothermal, solar and wind power; solid biomass; biogas, liquid biofuels, etc.

The indicator "Renewable electricity" measures the share of electricity produced from renewable sources in gross national electricity production (in percentage).

The gross national electricity consumption is a sum of the total gross production and import of electricity minus electricity exported.

Units

- GWh
- percentage

Key question

What is the share of electricity originating from renewable sources in the gross electricity consumption in the Republic of Macedonia?

Key message

The share of electricity originating from renewable sources in the gross electricity consumption in the Republic of Macedonia is rather low. It makes relatively high annual fluctuation depending on hydrological conditions, considering that so far only hydro and solar power from among renewable sources contribute to electricity production from renewable sources. Efforts should be made to utilize other renewable sources for electricity production.

There was a variable trend in the rate of renewably energy sources utilization during the analyzed period. In 2010, resulting from favourable hydrological conditions, the share of renewable electricity in the total gross electricity consumption was the highest amounting 28%, while the lowest share was recorded in 2001 amounting 9.2%. After the fall by 58% in the period 2010 to 2012, it is positive that 2013 recorded growth in the share of renewable energy in the gross electricity consumption in the Republic of Macedonia by 60%.

In 2014 for the first time, wind originating electricity contributed 0.85% to the total consumption of electricity from renewable sources.

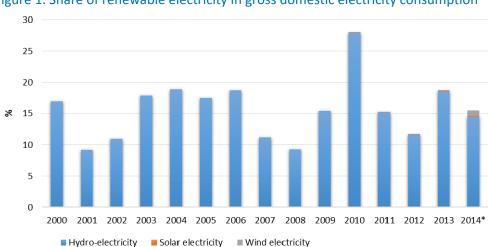


Figure 1. Share of renewable electricity in gross domestic electricity consumption

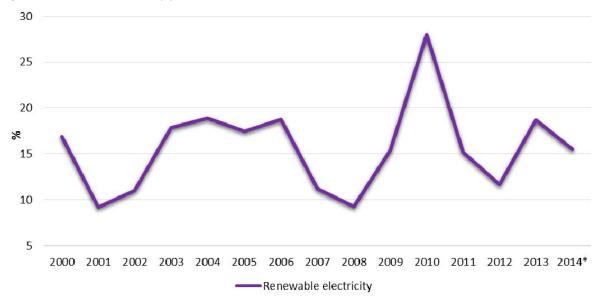


Figure 2. Trend in electricity production from renewable sources (%)

Data coverage: **excel**

Source: State Statistical Office

Assessment

The production of electricity from renewable sources in the Republic of Macedonia is based on the hydropower, while minor contribution has been noted by solar electricity for the last four years. Production in large hydropower plants is predominant.

At present, the share of renewable electricity in the overall electricity consumption is very important and depends on hydrological conditions during the year. Variable hydrological conditions result in variations in the production of hydro energy due to lower quantities of precipitation. This indicates the fact that there is a need for investments in installations to enable utilization of other renewable energy sources as well, such as geothermal, solar and wind power and increase in the share of the total electricity production.

During the observed period, there was a variable trend of utilization of energy from renewable sources. In 2010, resulting from favourable hydrological conditions, the share of renewable electricity in the total gross electricity consumption was the highest amounting 28%, while the lowest share was recorded in 2001 amounting 15%. After the fall by 58% in the period 2010 to 2012, it is positive that 2013 recorded growth again in the share of renewable energy in the gross electricity consumption in the Republic of Macedonia by 60%, which unfortunately to fall by 17% again in 2014. In 2014 for the first time, wind originating electricity contributed 0.85% to the total consumption of

In 2014 for the first time, wind originating electricity contributed 0.85% to the total consumption of electricity from renewable sources.

Methodology

Methodology for the indicator calculation

Statistical methodology for calculation:

- Common surveys for coal, oil, natural gas, electricity and heat, renewable energy for 2005 by Eurostat, ECE/UN and IEA/OECD.
- "Energy Statistics Methodology Eurostat F4, 1998"

Policy relevance of the indicator

- Strategy for Renewable Energy Sources Utilization in the Republic of Macedonia by 2020¹
- National Strategy for Sustainable Development in the Republic of Macedonia 2009 2030²
- Strategy for Energy Efficiency Promotion in the Republic of Macedonia by 2020³
- Strategy for Energy Development in the Republic of Maceodnia by 2030⁴

Legal grounds

Law on Energy; Energy Balance of the Republic of Macedonia - annual planning document defining the demands for energy and the possibility for their supply (Article 16 of the Law on Energy).

Targets

To achieve the required increase in order to reach the EU indicative target of 25% share by 2020, and 30% by 2030.

Reporting obligation

- Eurostat
- ECE/UN
- IEA/OECD

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 031	Renewable electricity	CSI 031 ENER 030	Renewable electricity consumption	R	В	energy	annualy

¹ http://www.gec.mk/EE%20vo%20Makedonija/Strategija%20za%20OIE.28juni2010.pdf

 $^{^2\} http://www.moepp.gov.mk/wp-content/uploads/2014/12/Nacionalna-Strategija-za-Odrzliv-Razvoj-vo-RM-NSSD-Del-1.pdf$

³ http://www.konkurentnost.mk/StrateskiDokumenti/StrategijazaunapreduvanjenaEERMdo2020godina.pdf

⁴ http://www.build.mk/docs/users/cloverstack/Strategija%20za%20razvoj%20na%20energetikata%202008-2020%20so%20vizija%20do%202030.pdf

ENERGY DEPENDENCE FOR ALL FUELS

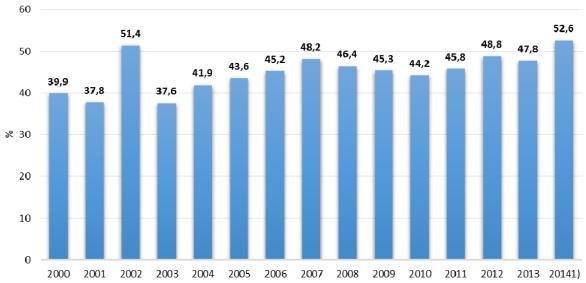
Definition

Energy dependence is calculated as ratio between net import of energy and the total energy consumption

Units

percentage

Key question


What is the rate of energy dependence of the Republic of Macedonia?

Key message

During the reporting period, variable trend of growth and fall in energy dependence could be noted. Data indicated increase in energy dependence on import in 2014 compared to previous year by 10%.

The highest energy dependence during the reporting period was recorded in 2014 or 52.6% of energy consumption in the country was covered by import. The lowest energy dependence of 37.6% was recorded in 2003.

Figure 1. Energy dependence for all fuels (%)

Data coverage: **excel**

Source of data: State Statistical Office

Assessment

Energy dependence measures the rate of country dependence on import in order to meet its energy demand. The goal of every country's energy policy is to reduce its dependence on imported energy.

During the analyzed period, variable trend of growth and fall in energy dependence could be noted. The trend of increase in energy dependence on import in order to meet energy demand in the country continued in 2014, too. Data showed increase in energy dependence on import in 2014 compared to previous year by 10% or 52.6% of energy consumption in the country was covered by import, which was the highest energy dependence during the analyzed period. The lowest energy dependence of 37.6% was recorded in 2003.

Methodology

Methodology for the indicator calculation

Statistical methodology for calculation:

- Common surveys for coal, oil, natural gas, electricity and heat, renewable energy by Eurostat, ECE/UN and IEA/OECD
- "Energy Statistics Methodology Eurostat F4, 1998"

Policy relevance of the indicator

- Strategy for Renewable Energy Sources Utilization in the Republic of Macedonia by 2020¹
- National Strategy for Sustainable Development in the Republic of Macedonia 2009 2030²
- Strategy for Energy Efficiency Promotion in the Republic of Macedonia by 2020³
- Strategy for Energy Development in the Republic of Maceodnia by 2030⁴

Legal grounds

Law on Energy; Energy Balance of the Republic of Macedonia - annual planning document defining the demands for energy and the possibility for their supply (Article 16 of the Law on Energy).

Targets

Reduction of dependence on import through investments in research and generation of new energy sources (with focus on the utilization of solar, geothermal energy and biomass from waste in rural areas) and other energy infrastructures.³

Reporting obligation

Eurostat

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 058	Energy dependence for all fuels	tsdcc310/ SDI	Energy dependance	D	Α	Energy	annually


¹ http://www.economy.gov.mk/dokumenti/strategii/3102.html

 $^{^2\} http://www.moepp.gov.mk/wp-content/uploads/2014/12/Nacionalna-Strategija-za-Odrzliv-Razvoj-vo-RM-NSSD-Del-1.pdf$

³ http://www.konkurentnost.mk/StrateskiDokumenti/StrategijazaunapreduvanjenaEERMdo2020godina.pdf

⁴ http://www.build.mk/docs/users/cloverstack/Strategija%20za%20razvoj%20na%20energetikata%202008-2020%20so%20vizija%20do%202030.pdf

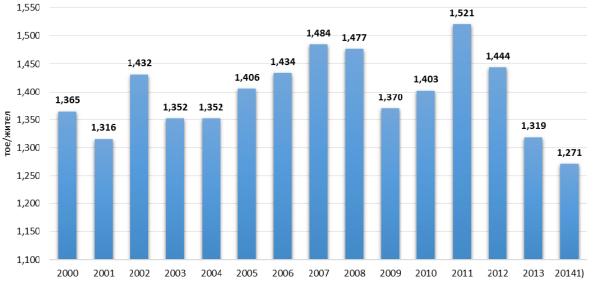
TOTAL ENERGY CONSUMPTION PER CAPITA

Definition

Total energy consumption is the sum of domestic primary production, net import and balance of reserves. The total energy consumption per capita is obtained as a ratio between total energy consumption and total number of population in the reference year.

Units

thousand tons of oil equivalent (ktoe) per capita


Key question

What is the total energy consumption per capita in the Republic of Macedonia?

Key message

During the reporting period, this indicator had variable trend of growth and fall in energy consumption per capita. The highest consumption of the total energy consumption during the analyzed period was recorded in 2011 reaching 1.521 ktoe/capita, and the lowest one in 2014 amounting 1.271 ktoe/capita reflecting a fall by 16.4%.

Figure 1. Total energy consumption per capita (toe/capita)

Data coverage: **excel**

Source of data: State Statistical Office

Assessment

Consumption of the total energy consumption is notably dependent on the development of the main consumption sectors, including electricity production. This indicator reflects to a significant rate the level of living standard, demands for heating and structure of industry or economy in the country.

During the reporting period, this indicator had variable trend of growth and fall in energy consumption per capita.

The total energy consumption dependes on the demand, i.e. consumption of fuels. If demand in industry and other sectors increases or decreases, the total energy consumption will increase/decrease accordingly.

The highest consumption of the total energy consumption during the analyzed period was recorded in 2011 reaching 1.521 ktoe/capita, and the lowest one in 2014 amounting 1.271 ktoe/capita reflecting a fall by 16.4%

Methodology

Methodology for the indicator calculation

Statistical methodology for calculation:

- Common surveys for coal, oil, natural gas, electricity and heat, renewable energy by Eurostat, ECE/UN and IEA/OECD
- "Energy Statistics Methodology Eurostat F4, 1998"

Policy relevance of the indicator

- Strategy for Renewable Energy Sources Utilization in the Republic of Macedonia by 2020¹
- National Strategy for Sustainable Development in the Republic of Macedonia 2009 2030²
- Strategy for Energy Efficiency Promotion in the Republic of Macedonia by 2020³
- Strategy for Energy Development in the Republic of Maceodnia by 2030⁴

Legal grounds

Law on Energy; Energy Balance of the Republic of Macedonia - annual planning document defining the demands for energy and the possibility for their supply (Article 16 of the Law on Energy).

Reporting obligation

Eurostat

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 059	Total energy consumption per capita			D	А	Energy	annually

¹ http://www.economy.gov.mk/dokumenti/strategii/3102.html

 $^{^2\} http://www.moepp.gov.mk/wp-content/uploads/2014/12/Nacionalna-Strategija-za-Odrzliv-Razvoj-vo-RM-NSSD-Del-1.pdf$

 $^{^3\} http://www.konkurentnost.mk/StrateskiDokumenti/Strategijazaunapreduvanjena EERM do 2020 godina.pdf$

⁴ http://www.build.mk/docs/users/cloverstack/Strategija%20za%20razvoj%20na%20energetikata%202008-2020%20so%20vizija%20do%202030.pdf

SHARE OF RENEWABLE ENERGY IN GROSS FINAL ENERGY CONSUMPTION

Definition

The share of renewable energy in the gross final energy consumption is the ratio between gross final energy consumption from renewable energy sources and the gross final energy consumption from all types of fuels.

The gross final energy consumption from all types of fuels is the sum of the final energy consumption, electricity and heat consumption in the process of production in electricity and heat production sectors, as well as losses of heat and electricity in transmission and distribution.

Calculations of the indicator with normalized values in the gross final electricity consumption use pondered values of electricity generated in hydro power plants in order to balance the effects of climate change.

Units

percentage

Key question

Has the share of reneable energy in the gross final energy consumption been growing and what is the progress towards the share targets of 20% by 2020?

Key message

Calculated by normalized values, the share of reneable energy in the gross final energy consumption in 2014 was 17.2% and approaching the set target of 20% in 2020. In 2014 compared to 2006 which was taken as baseline year for target monitoring, there was significant increase of 13.9%.

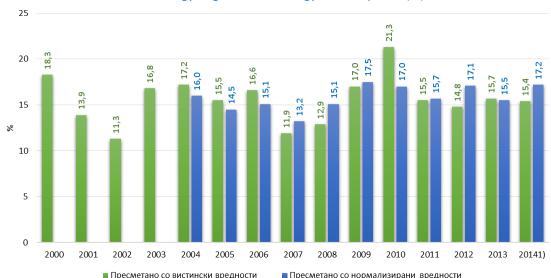


Figure 1. Share of renewable energy in gross final energy consumption (%)

Data coverage: **excel**

Source of data: State Statistical Office

Assessment

The share of reneable energy in the gross final energy consumption during the analyzed period had variable trend of growth and fall. Calculated by normalized values, the share in 2014 was 17.2% and noting a trend of constant growth in the share of reneable energy.

The increase in the share of reneable energy in the gross final energy consumption has resulted from the newly constructed facilities for energy generation from renewable energy sources (construction of wind farm, photovoltaic plants, small hydro power plants, etc.) owing to the favourable national energy policy.

Methodology

Methodology for the indicator calculation

Statistical methodology for calculation:

- Regulation on energy statistics of the European Parliament and of the Council (Regulation no.1099/2008).
- "Energy Statistics Methodology Eurostat F4, 1998"

Policy relevance of the indicator

- Strategy for Energy Efficiency Promotion in the Republic of Macedonia by 2020¹
- Strategy for Energy Development in the Republic of Maceodnia by 2030²
- Strategy for Renewable Energy Sources Utilization in the Republic of Macedonia by 2020³

Legal grounds

 Law on Energy; Energy Balance of the Republic of Macedonia - annual planning document defining the demands for energy and the possibility for their supply.

Targets

Increased share of renewable energy sources to a level higher than 20% of the total final energy consumption by 2020 compared to 2006.²

Reporting obligation

■ Eurostat, ECE/UN and IEA/OECD.

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 060	Share of renewable energy in gross final energy consumption	CSI 048 ENER 028	Share of renewable energy in gross final energy consumption	D	А	Energy	annually

¹ http://www.konkurentnost.mk/StrateskiDokumenti/StrategijazaunapreduvanjenaEERMdo2020godina.pdf

 $^{^2\} http://www.build.mk/docs/users/cloverstack/Strategija\%20za\%20razvoj\%20na\%20energetikata\%202008-2020\%20so\%20vizija\%20do\%202030.pdf$

³ http://www.gec.mk/EE%20vo%20Makedonija/Strategija%20za%20OIE.28juni2010.pdf

FISHERY

FISH STOCKS CHARACTERISTICS

Definition

The indicator shows the number of freshwater species living in rivers and lakes in the Republic of Macedonia and the fish species represented in fishponds that are subject to aquicultural production.

At present, the indicator shows the status of:

- catch of two economically significant fish species in fishing waters;
- total catch of other fish species in fishing waters;
- total aquicultural fish production in fishponds.

Units

Number of fish species, kilograms (tones) fish catch.

Key policy issue

How sustainable is the fish catch in the Republic of Macedonia?

Key message

The average fish catch in the Republic of Macedonia is 1. 376 tons of different fish species. The overall fish catch had periodical trend of reduction and increase, from 2003 to 2006 the catch reduced because individual fishing companies, business entities and concessionaires lost their permits for fishing activities in individual aquatic basins and high number of sports fishing clubs were terminated.

The greatest fish cat was noted in 2000 amounting 1834, and the lowest one was in 2006 and amounted 813 tons. Carp is the leading species in lowland waters with a catch of 193 tons in 2014, and trout in highland waters with a catch of 1068 tons in 2014. Trout had the highest share in the total fish catch in 2014 with 71%, followed by carp with 12.9%, other fish with 10.19% and catfish had lowest share with 3%.

Figure 1. Total fish catch

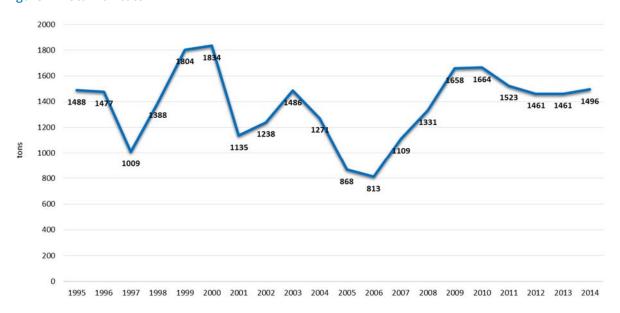


Figure 2. Catch of the main fish species

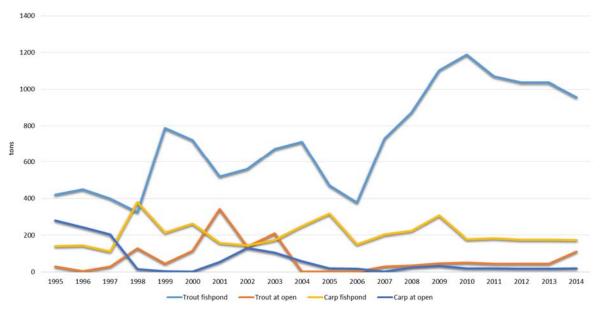
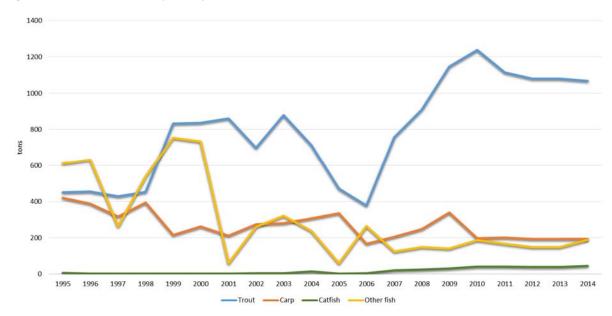



Figure 3. Total fish catch by fish species

Data coverage: **exce**

Source: State Statistical Office

Assessment

During the observed period, with regard to total fish catch (production of commercial fish and fishing by sports fishermen) in the Republic of Macedonia, the average catch is 1.376 tons of different fish species. In the period from 1995 to 2003, the overall fish catch had periodical trend of reduction and increase, from 2003 to 2006 the catch decreased because some fishing companies, business entities and concessionaireslost their licenses for fishing activities in certain water basins, and significant number of sports fishing clubs were terminated.

Trend of increase by 104.6% in the total fish catch was noted in the period 2006 to 2010

compared to 2006, i.e. it increased from 813 to 1664 tons of fish. Then, in the period 2011 to 2014, there was drop in fish catch again compared to 2010 by 10%.

Figure 3 shows that the carp is pre dominant fish species in lowland waters with a catch of 193 tons in 2014, while trout is leading in highland waters with a catch of 1068 tons in 2014. In the total fish catch in 2014, trout had the highest share with 71%, followed by carp with 12.9%, other fish species with 12.7% and catfish with 3% noted lowest share.

FishingandfishstockexploitationinfishpondsandartificialwateraccumulationsintheRepublicofM acedoniaisunderpermanentsupervision, with constant care for the fish stocks and regular stocking with economically important fish species. In this way, sustainable development and exploitation of fish as an important economic resource is provided, as well as for sports fishing. Exploitation of fish stocks from natural lakes has been coping with permanent problems for a longer period, including over-fishing and uncontrolled fish catch in those aquatic ecosystems. These activities affect particularly the endemic fish species, such as Ohrid trout (Salmo letnica Kar.), as well as other endemic species represented by small populations in certain aquatic ecosystems.

Methodology

Methodology for the indicator calculation

The source of data on the characteristics of fish stocks in the Rerpublic of Macedonia is the State Statistical Office and their methods are used for data processing.

Uncertainty

Uncertainty derives from the assumed incomplete data on fish catch in rivers and lakes. The uncertainty increases further because of the limitted number of literature data on genetic structure of fish populations in natural aquatic ecosystems.

Policy relevance of the indicator

List of relevant policy documents

The Study on the State of Biological Diversity in the Republic of Macedonia and the National Strategy for Biological Diversity Protection with Action Plan establish integrated approach to the protection and sustainable use of biological diversity components including fishery.

Spatial Plan of the Republic of Macedonia.

Legal grounds

The Law on Fishery and Aquiculture regulates the management, planning, commercial management and aquiculture of fish in fishing waters, fish ponds, semi fish ponds, cages and other fish breeding resources.

Targets

The overall fish production in the Republic of Macedonia has been envisaged to grow by 2.300 tons by 2020. The main mass in this grow will consist of trout fish (1.435 tons or 62%of the total catch) mostly from fishponds.¹

Reporting obligation

■ FAO – Fisheries and Aquaculture Department

¹Spatial Plan of the Republic of Macedonia

Code	Title of the indicator		cewithCSI/EEAor r indicators	Classification by DPSIR	Туре	Linkagewitharea	Frequency of publication
MKNI 041	Fish stock characteristics	FISH 3	Fish stock characteristics	s	A	Water Biodiversity Tourism	annual

TRANSPORT

PASSENGER TRANSPORT DEMAND

Definition

The indicator "passenger transport demand" will be presented in two different ways:

- 1) To measure decoupling of passenger transport demand from economic growth, the volume of passenger transport relative to GDP will be used. The decoupling indicator is defined as the ratio between pkm (inland modes) and GDP (Gross Domestic Product in constant 2000 EUR). In the presentation of this indicator in the Republic of Macedonia, the index 2000=100 is taken as baseline year.
- 2) Share of passenger transport: This indicator is defined as the percentage share of each mode of transport in the total inland transport. The unit used is the passenger-kilometre (pkm), which represents one passenger traveling a distance of one kilometre. It is based on transport by passenger cars, buses and coaches and trains.

All data should be based on movements on national territory, regardless of the nationality of the vehicle. However, data collection methodology should be harmonised at the EU level.

Units

The unit used is the passenger-kilometre (pkm), which represents one passenger travelling a distance of one kilometre. It is based on transport by passenger cars, buses and coaches, and trains.

Passenger transport demand and GDP are shown as an index 2000=100.

Key policy question

Is the passenger transport in road transport reduced compared to other transport modes?

Is the passenger transport demand decoupled from economic growth?

Key message

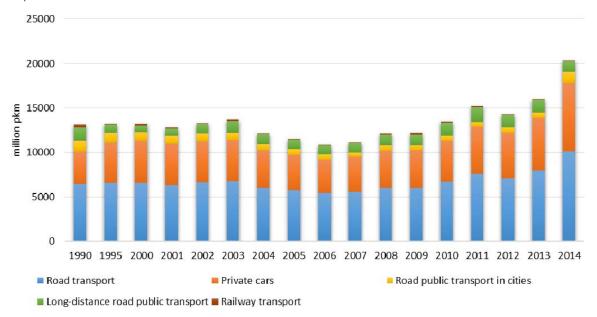
The overall passenger transport demand has grown by 33.87% during the analyzed period.

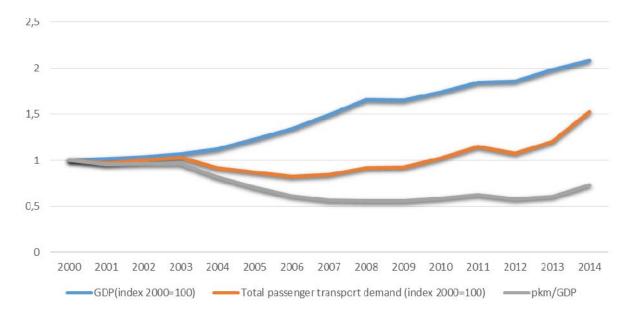
The share of road transport in the total passenger transport was 99.2% in 2014, reflecting an increase by 36.8 % compared to 1990, for railroad transport it was 0.8% in 2014 or decline by 4.4 times relative to 1990.

The share of the private cars in the total passenger transport is the highest. The share in 2014 was 75.6%, being at the same time the highest share during the analyzed period. Increased demand for cars has direct reflection on the structure of passenger inland transport, negative impacts on environment and health, especially for the fact that high number of vehicles transports low number of passengers. Data on the share of private vehicles and public road transport in cities has been estimated.

Demand for passenger transport per capita was the lowest in 2006 – 2.69 km, and the highest in 2014 with 4.94 km.

Figure 1 Passenger kilometers of individual modes of passenger transport in the total passenger transport




Figure 2 Share of individual modes of passenger transport in the total passenger transport

Total Passenger transport demand per capita

Figure 3: Demand for passenger transport per capita

Figure 4: Total passenger transport demand/GDP ratio

Data coverage: excel

Data source: State Statistical Office

Assessment

The total passenger transport demand during the analyzed period ranged between 5492 and 10 208 passenger kilometers, noting increase by 33.87%. The share of road transport in the total passenger transport was 99.2% in 2014 reflecting increase by 36.8% compared to

1990, and it was 0.8% in railroad transport in 2014 or decrease by 4.4 times compared to 1990.

The share of private cars in the total passenger transport was the highest. In 2014, it had share of 75.6% representing also the highest share during the analyzed period. The lowest share of 57.7% was recorded in 1990. In the period from 2000 to 2006, there was a falling trend by 25.9%, followed by growing trend up to 2014 by 50.3%. This indicates that the reduction of environmental pollution requires reduction in the share of road transport in the share of passenger transport in favour of other transport modes. This would also result in avoided costs for the expensive liquid fuel which while combusting pollutes the environment.

The road public transport in cities throughout the analyzed period noted significant trend of reduction amounting 68.5%.

Inter-city public road transport during the analyzed period noted variable trend with the biggest reduction in 2014 of 4.4 times compared to 1990 recorded for railway transport meaning that this transport mode was used at very low rate.

Data on the share of private cars and public road transport in cities was estimated.

The passenger transport demand per capita was the lowest in 2006 with 2.69 km per capita, and the highest in 2014 with 4.94 km per capita.

The trend of the passenger kilometer/GDP ratio from 2000 to 2013 was mainly in decrease. It is indexed for the year 2000=100 in order to monitor the changes in the intensity of passenger transport demand relative to economic growth presented through GDP.

Methodology

Methodology for the indicator calculation

In order to measure the decoupling of passenger transport demand from economic growth, the volume (i.e. intensity) of passenger transport relative to GDP is calculated. Relative decoupling occurs when the passenger transport demand rises at rate lower than the one of the GDP. Absolute decoupling occurs when the passenger transport demand falls while GDP rises or remains constant.

The unit used is passenger-kilometre (pkm), which represents one passenger traveling a distance of one kilometre.

With regard to EU Member States, according to Regulation on road transport and Regulation (EC) No 91/2003 on railroad transport statistics, data is based on all movements of passenger transport on the national territory.

Source of used methodology

Structural indicators of Eurostat on transport State Statistical Office

Methodological uncertainty and data uncertainty

All data is based on the movements on the national territory, regardless of the nationality of the vehicle. The methodology of data collection has been harmonised at EU level, but estimated data has been used for the purposes of data calculation on the transport by passenger car. Sources include EUROSTAT, National statistical offices, ECMT, UNECE, UIC, DG TREN.

In order to answer the question whether the passenger transport demand is decoupling from economic growth, the intensity of passenger transport relative to changes in real GDP is considered.

Uncertainty of data sets

In order to obtain full picture of passenger transport demand and corresponding problems in the environment, it would be very useful to supplement data with data on the number of vehicle-kilometers.

Policy relevance of the indicator

List of relevant policy documents

The National Strategy for Transport prepared and adopted by the Government of the Republic of Macedonia determines the main directions of the transport policy development in the Republic of Macedonia through identification of goals and development strategy for road, rail and air transport sectors.

Legal grounds

The road transport is regulated by the Law on Road Transport. It regulates the conditions and the manner of performing transport of passengers and goods in internal and international road transport.

Transportation of dangerous goods is regulated by the Law on Dangerous Goods Transportation in Road and Railroad Transport, regulating the conditions under which transport of dangerous goods shall be performed (preparation of matter, loading, transport, on road procedures, unloading, safety in transportation, vehicles equipment and staff training).

Railroad transportation is regulated by the Law on Railroads, Law on Agreements on Transportation in Railroad Traffic, Law on Agency Regulating Railroad Transport Services Market and Law on Railroad Transport Safety.

Reporting obligation

EUROSTAT

Code	Title of the indicator		ce with CSI/EEA er indicators	Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 035	Passenger transport demand	CSI 035	Passenger transport demand	P	В	TtransportGDP	Monthly Periodically Annualy

FREIGHT TRANSPORT DEMAND

Definition

The indicator "freight transport demand" will be presented in two different ways:

- 1) To measure decoupling of freight transport demand from economic growth, the volume of freight transport relative to GDP will be used. The decoupling indicator is defined as the ratio between tkm (inland transport) and GDP (Gross Domestic Product in constant 2000 EUR). Presentation of this indicator in the Republic of Macedonia will be based on the baseline year 2000=100.
- 2) Modal split share of freight transport: This indicator is defined as the percentage share of each mode of freight transport in total inland transport. The unit used is tonne-kilometre (tkm), which represents movement of one tonne of goods over a distance of one kilometre. It includes road and railroad inland transport. Railroad transport is based on movements on national territory, regardless of the nationality of the vehicle. Road freight transport is based on all movements of vehicles registered in the reporting country.

Units

The unit used is the tonne-kilometre (tkm), which represents the movement of one tonne of goods over a distance of one kilometre. It includes transport by road and rail.

Freight transport demand and GDP are shown as an index (2000=100).

Key policy question

Is the freight transport in road transport reduced compared to other transport modes?

Is the freight transport demand decoupled from economic growth?

Key message

The overall freight transport demand noted variable trend of increase and decrease during the analyzed period. The overall freight transport demand in 2014 increased by 60.1% compared to 1990 as a result of increase in road transport by 70.4%, while the railroad freight transport showed decline by 87% without positive impacts on environment.

Freight kilometers/GDP ratio in the period 2000 to 2014 followed the variable trend of the overall demand for freight transport.

Figure 1: Freight transport by modes in tone kilometers (in million km)

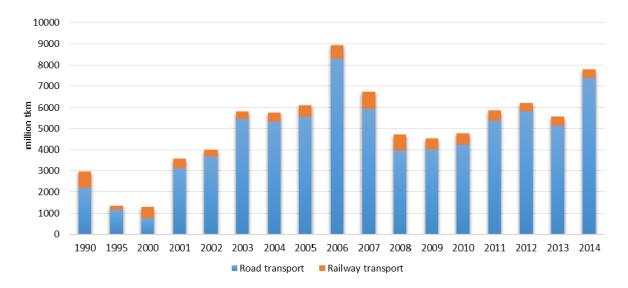
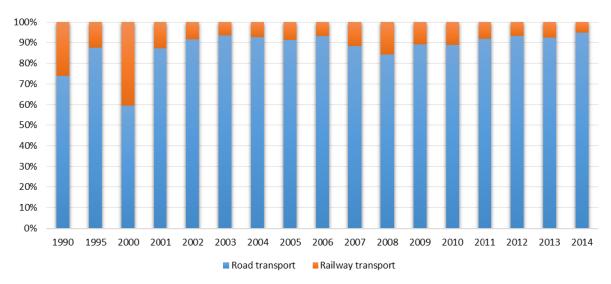



Figure 2: Share in percentages of tone kilometers of individual freight transport modes in the total freight transport

8,0 7,0 6.0 5.0 4,0 3,0 2.0 1.0 2000 2001 2002 2003 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2004 GDP(index 2000=100) Total freight transport demand (index 2000=100) tkm/GDP

Figure 3: Total freight transport demand/GDP ratio

Data source: State Statistical Office

Assessment

The freight transport demand noted variable trend of increase and decrease during the analyzed period. Figure 2 shows that the highest share in freight transport belongs to road transport ranging between 59.6% (2000) and 94.7% (2014), while railroad freight transport had a share between 5.3% (2014) and 40.4% (2000) of the total freight transport demand. The share of railroad in the total freight transport, after the positive trend in 2013 reaching 7.6%, noted decline in 2014 with a share of 5.3% or reduction by 50.3% which will increase the negative impact of transport on the environment.

The above is sufficient indication that the indicator should endeavour towards reduction of road transport in favour of other freight transport modes. The reason for this is that the road freight transport uses costly liquid fuels which during combustion on roads cause significant pollution of the environment, air, soil, biodiversity, etc.

Figure 3 shows that the trend of the index of the total freight transport demand relative to GDP had variable trend of increase and decrease, with domination of growing trend in the period from 2000 to 2006, followed by increase again in 2014. It is indexed on baseline year 2000=100 in order to monitor the changes in the intensity of freight transport demand relative to economic growth expressed through GDP.

Methodology

Methodology for the indicator calculation

In order to measure the decoupling of freight transport demand from economic growth, the volume (i.e. intensity) of freight transport relative to GDP is calculated. Relative decoupling occurs when the freight transport demand rises at rate lower than the one of the GDP. Absolute decoupling occurs when the freight transport demand falls while GDP rises or remains constant.

The unit used is the tonne-kilometre (tkm), which represents movement of one tonne over a distance of one kilometre.

With regard to EU Member States, according to Regulation on road transport and Regulation (EC) No 91/2003 on railroad transport statistics, data is based on all movements of passenger transport on the national territory.

According to Regulation (EC) No 1172/98, data on freight road transport is based on all movements of vehicles registered in the reporting country. All other data on transport refer mainly to movements on national territory, regardless of the nationality of the vehicle.

Sources of used methodology

Structural indicators of EUROSTAT on transport

State Statistical Office.

Methodological uncertainty and data uncertainty

All data is based on movements on national territory, regardless of the nationality of the vehicle. Methodology of data collection has been harmonized at EU level. Sources include EUROSTAT, National statistical offices, ECMT, UNECE, UIC, DG TREN.

In order to answer the question whether the freight transport demand is decoupling from economic growth, the intensity of freight transport relative to changes in real GDP is considered.

Uncertainty of data sets

In order to obtain full picture of transport demand and corresponding problems in the environment, it would be very useful to supplement data with data on the number of vehicle-kilometers.

Policy relevance of the indicator

List of relevant policy documents

The National Strategy for Transport prepared and adopted by the Government of the Republic of Macedonia determines the main directions of the transport policy development in the Republic of Macedonia through identification of goals and development strategy for road, rail and air transport sectors.

Legal grounds

The road transport is regulated by the Law on Road Transport. It regulates the conditions and the manner of performing transport of passengers and goods in internal and international road transport.

Transportation of dangerous goods is regulated by the Law on Dangerous Goods Transportation in Road and Railroad Transport, regulating the conditions under which transport of dangerous goods shall be performed (preparation of matter, loading, transport, on road procedures, unloading, safety in transportation, vehicles equipment and staff training).

Railroad transportation is regulated by the Law on Railroads, Law on Agreements on Transportation in Railroad Traffic, Law on Agency Regulating Railroad Transport Services Market and Law on Railroad Transport Safety.

Targets

The fourth goal of the National Strategy for Transport is securing sustainable protection of the environment.

Reporting obligation

EUROSTAT

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 036	Freight transport demand	CSI 036	Freight transport demand	P	В	TransportGDP	Monthly Periodically Annualy

MK - NI 054

ROAD MOTOR VEHICLES BY FUEL TYPE

Definition

This indicator defines the number of motor vehicles broken down by road motor vehicle type (passenger cars, motorcycles, motor coaches and buses, commercial vehicles, operational vehicles, trailers and tractors) and fuel type (gasoline, diesel, mixture, gas oil, electricity) on national level.

Units

percentage (%).

Key policy question

What is the share of road motor vehicles by fuel type in the total number of road motor vehicles by vehicle type?

Key message

Emissions of polluting substances originate from almost all economic and social activities, and especially emissions from transport, contribute greatly to overall air emissions. Utilization of alternative energy sources, renewable sources, biofuel and natural gas are all primary processes for air quality improvement.

Use of gasoline by cars is the highest, though with falling trend of 40% during the analyzed period. At the account of decline in the use of gasoline, use of diesel has recorded increasing trend from 2.3% in 1995 to 39.1% in 2014, which does not assume improvement in terms of environment protection and reduction of air emissions. Other types of fuel have very low share with growing trend and range from 0.5% in 1995 to 3.0% in 2014.

With other types of vehicles – motor coaches and buses, trucks and trailers - diesel is dominant type of fuel with growing trend, followed by gasoline. Other types of fuel have very low share with growing trend.

Figure 1. Share of passenger cars by fuel type in the total number of passenger cars

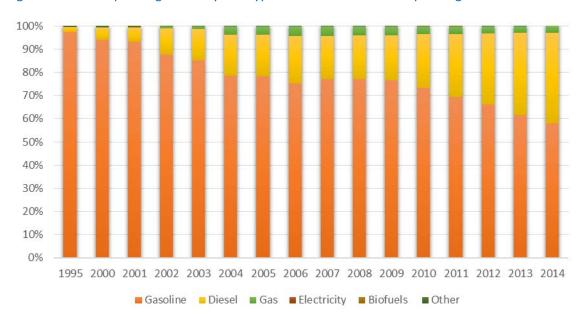


Figure 2. Share of motor coaches and buses by fuel type in the total number of motor coaches and buses

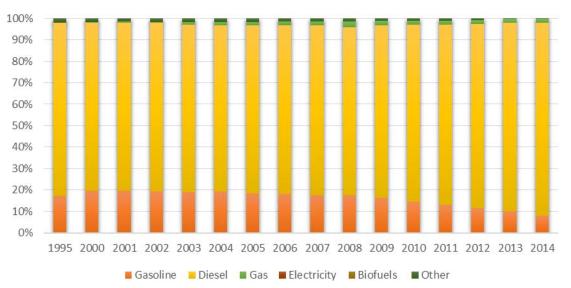
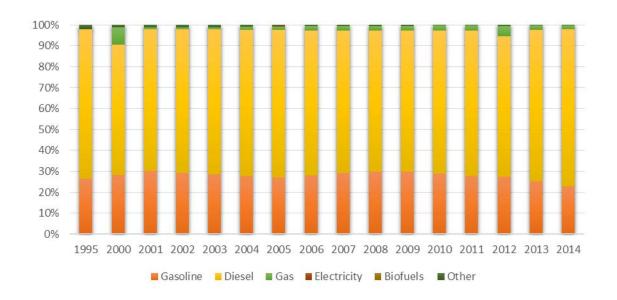



Figure 3. Share of trucks by fuel type in the total number of trucks

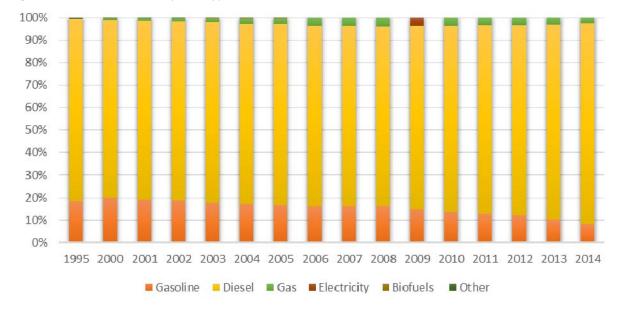


Figure 4. Share of trailers by fuel type in the total number of trailers

Data source: State Statistical Office, Ministry of Interior

Assessment

Emissions of polluting substances originate from almost all economic and social activities, and especially emissions from transport, contribute greatly to overall air emissions. Policies and strategies for air pollution reduction are aimed primarily at reducing emissions from transport (combustion of fossil fuels in vehicles). Utilization of alternative energy sources, renewable sources, biofuel and natural gas are all primary processes for air quality improvement.

Data during the reporting period indicate that use of gasoline in cars was the biggest, though with falling trend. In 1995, 97.2% of the cars used gasoline to fall at 57.9% of the cars in 2014. At the account of decline in the use of gasoline, use of diesel has recorded increasing trend from 2.3% in 1995 to 39.1% in 2014, which does not assume improvement in terms of environment protection and reduction of air emissions. Other types of fuel have very low share with growing trend and range from 0.5% in 1995 to 3.0% in 2014. The use of gas increased by thousand times from 1995 to 2014

With other types of vehicles – motor coaches and buses, trucks and trailers - diesel is dominant type of fuel with growing trend, followed by gasoline.

Use of diesel in motor coaches and buses recorded increase from 11.8% by 2014, and gasoline recorded drop from 54.3% during the analyzed period. Other types of fuel have very low share in the overall use of fuels ranging between 0.3% and 2.0%.

As far as trucks are concerned, use of diesel has almost constant share during the whole period, ranging between 67.2% and 75.0%; the same accounts for the use of gasoline with a range between 22.8% and 30.4%. Gas noted variable trend of use with the greatest share of 8.8% in 2005 followed by drop during the entire analyzed period, recording 1.8% in 2014. Other types of fuel have very low share and range between 2.0% and 0.3%.

With trailers, as with motor coaches and buses, use of diesel was the biggest with increase of 9.7% by 2014, while gasoline recorded decrease of 54.3% by 2014. Other types of fuel have very low share and range between 0.2% and 0.6%.

Methodology

Methodology for the indicator calculation

Data for the indicator is obtained from the number of road motor vehicles by fuel type and total number of road motor vehicles by type of motor vehicles and is calculated as share of the number of road motor vehicles by fuel type in the total number of road motor vehicles by type of motor vehicles. The sum of the shares (%) of all types of road motor vehicles by fuel should amount 100 (%), relative to total number of road motor vehicles by type of motor vehicles.

Policy relevance of the indicator

List of relevant policy documents

National Strategy for Transport prepared and adopted by the Government of the Republic of Macedonia determines the main directions of transport policy development in the Republic of Macedonia through identification of targets and strategy for development of road, railroad and air transport sector.

Legal grounds

- Law on Road Transport (Official Gazette of RM no. 68/04, 127/06, 114/09, 83/10, 140/10, 17/11, 6/12, 23/13, 120/13, 163/13, 187/13, 42/14, 112/14, 166/14, 44/15 and 97/15)
- Law on Transport of Hazardous Matters in Road and Railroad Transport (Official Gazette of RM no. 92/07, 161/09, 17/11, 54/11, 13/13, 163/13, 38/14 and 166/14)
- Law on State Statistics (Official Gazette of RM no. 54/97, 21/07, 51/11, 104/13, 42/14 and 192/15)
- Law on Road Transport Safety (Official Gazette of RM no. 169/15 and 226/15)

Target

The fourth target of the National Strategy for Transport is securing of sustainable protection of the environment.

Reporting obligation

EUROSTAT

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 054	Road motor vehicles by fuel type			D	A	Transport Energy	Monthly Periodically Annually

MK-NI 055

AVERAGE AGE OF ROAD MOTOR VEHICLES

Definition

This indicator classifies road motor vehicles by motor vehicle type (passenger car, motor coaches and buses, commercial vehicles and trailers) and average age on country level.

Units

percentage (%).

Key policy question

Has the vehicle fleet resulted in decreased average age of vehicles?

Key message

Data for the reporting period on all vehicle categories indicates that vehicles aged above 10 years have the highest share in the overall number of vehicles.

The average age of passenger cars has increasing trend ranging between 14.43 and 17.7 years, motor coaches and buses have variable trend of decrease and increase ranging between 20 and 15.3 years. The average age of trucks has decreasing trend by 2011, followed by increase by 2014 and ranges between 16 and 14.1 years. For trailers, the average age has significant decreasing trend in the period from 2001 to 2014, ranging at 16,12 and 12.01 years.

Figure 1. Share of passenger cars by average vehicle age in the overall number of passenger vehicles

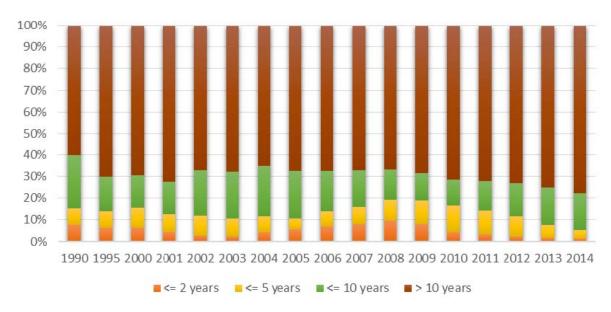
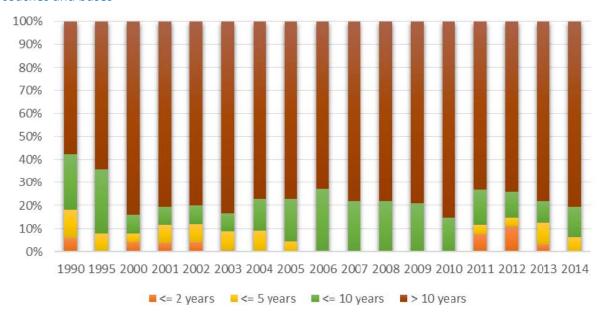
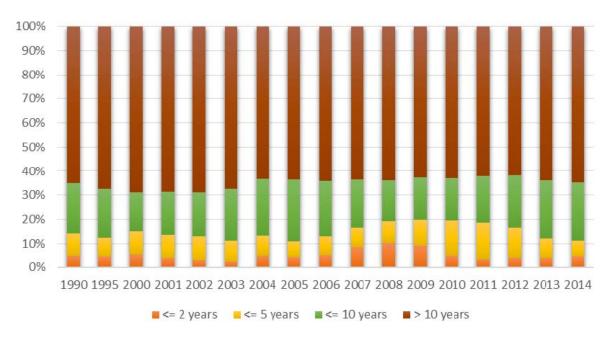
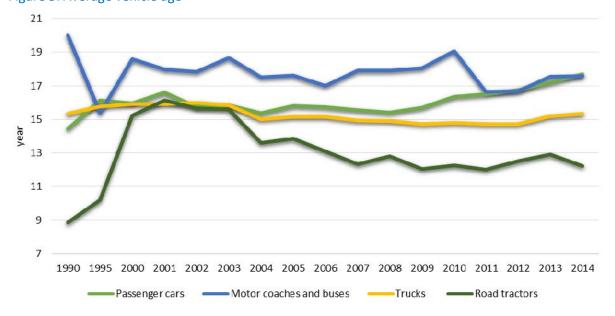


Figure 2. Share of motor coaches and buses by average vehicle age in the overall number of motor coaches and buses


Figure 3. Share of trucks by average vehicle age in the overall number of trucks

100%
90%
80%
70%
60%
50%
40%
1990 1995 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Figure 4. Share of trailers by average vehicle age in the overall number of trailers

Data source: State Statistical Office, Ministry of Interior

Assessment

Emissions of transport have great contribution to overall air emissions. Therefore, it is very important to renew vehicle fleet. Data for the reporting period on all vehicle categories indicates that the number of vehicles noted increase, but unfortunately vehicles aged above 10 years have the highest share in the overall number of vehicles which reflects old vehicle fleet with great influence of the total emissions of pollutants in the air.

The average age of passenger cars has increasing trend ranging between 14.43 and 17.7 years, motor coaches and buses have variable trend of decrease and increase ranging between 20 and 15.3 years. The average age of trucks had decreasing trend by 2011 followed with increase by 2014 and ranges

between 16 and 14.1 years. For trailers, the average age has significant decreasing trend in the period from 2001 to 2014 ranging between 16,12 and 12.01 years

With regard to passenger cars, the share in the overall number of vehicles in 2014, compared to 1990, aged above 10 years had increasing trend by 29.4%, vehicles aged from 5 to 10 years had decreasing trend by 32.4%, vehicles aged from 2 to 5 years were in decrease by 45.9% and vehicles aged up to 2 years had a trend of decrease by 83.3%.

The share in the overall number of motor coaches and buses in 2014 compared to 1990, of motor coaches and buses aged above 10 years had decreasing trend by 5.4%, motor coaches and buses aged between 5 and 10 years had decreasing trend by 64%, motor coaches and buses aged between 2 and 5 years had variable trend ranging between 0% and 17.4% and vehicles aged up to 2 years had variable trend ranging between 0% and 11.1%.

With trucks during the reporting period, the share in the overall number of trucks aged above 10 years had decreasing trend by 0.6%, trucks aged between 5 and 10 years had trend ranging between 16.1% and 25.4%, trucks aged between 2 and 5 years had share ranging between 7.6% and 15.1% and trucks aged up to 2 years had decreasing trend by 4.1%.

The share in the overall number of trailers in 2014 compared to 1990, of trailers aged above 10 years had increasing trend by 51.2%, trailers aged between 5 and 10 years had variable trend and ranged between 21.4% and 48.6%, trailers aged between 2 and 5 years had decreasing trend by 77.7% and vehicles aged up to 2 years had variable trend ranging between 0% and 13%.

Methodology

Methodology for the indicator calculation

Data for the indicator is obtained from the number of road motor vehicles by type and year of manufacturing, prepared by age groups and is calculated as share of the number of road motor vehicles by type. The sum of the shares (%) of all types of road motor vehicles by age groups should amount 100 (%), relative to total number of road motor vehicles by type of motor vehicles by age groups.

Policy relevance of the indicator

List of relevant policy documents

National Strategy for Transport prepared and adopted by the Government of the Republic of Macedonia determines the main directions of transport policy development in the Republic of Macedonia through identification of targets and strategy for development of road, railroad and air transport sector.

Legal grounds

- Law on Road Transport (Official Gazette of RM no. 68/04, 127/06, 114/09, 83/10, 140/10, 17/11, 6/12, 23/13, 120/13, 163/13, 187/13, 42/14, 112/14, 166/14, 44/15 and 97/15)
- Law on Transport of Hazardous Matters in Road and Railroad Transport (Official Gazette of RM no. 92/07, 161/09, 17/11, 54/11, 13/13, 163/13, 38/14 and 166/14)
- Law on State Statistics (Official Gazette of RM no. 54/97, 21/07, 51/11, 104/13, 42/14 and 192/15)
- Law on Road Transport Safety (Official Gazette of RM no. 169/15 and 226/15)

Target

The fourth target of the National Strategy for Transport is securing of sustainable protection of the

environment.

Reporting obligation • EUROSTAT

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 055	Average age of road motor vehicles	TERM 033	Average age of the vehicle fleet	D	A	Transport	Monthly Periodically Annually

TOURISM

MK - NI 047-1

TOURISM INTENSITY IN THE REPUBLIC OF MACEDONIA

1 International tourist intensity

Definition

The indicator shows the total number of foreign tourists by years at country level and by statistical regions and structure of visitors by country of origin.

Units

Number

Key policy issue

Does the number of tourists in the Republic of Macedonia have development dimension?

Key message

With regard to international tourist visits, the total number of foreign tourists during the analyzed period has had development nature or a rising trend of 3.5 times in 2014 compared to 1997.

Greece contributes significantly to the number of tourists in Macedonia with 472.152 tourists during the observed period. By statistical regions, the highest number of foreign tourists was recorded in Skopje and Southwestern regions. With regard to foreign tourist arrivals by types of resorts, the highest number of tourists was recorded in Skopje amounting 1.314.729, and the lowest in spa resorts with 43.993 tourists.

Considering that tourism is organized activity, it is necessary to monitor these parameters and activate organizations structures in environment protection and improvement through timely interventions and planning activities.

Figure 1. Total number of foreign tourists

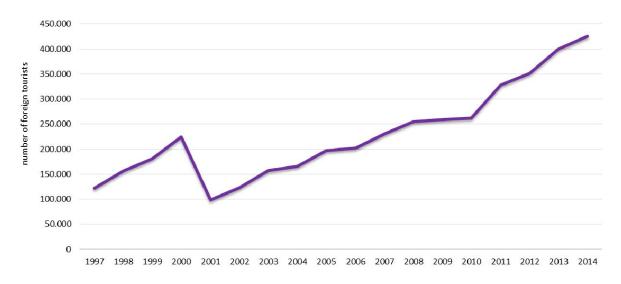


Figure 2. Total number of foreign tourists by country of origin in the reporting period

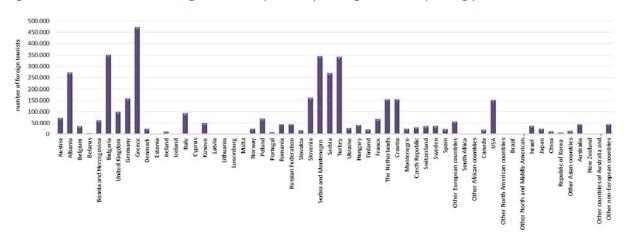


Figure 3. Countries with significant share in the number of foreign tourists

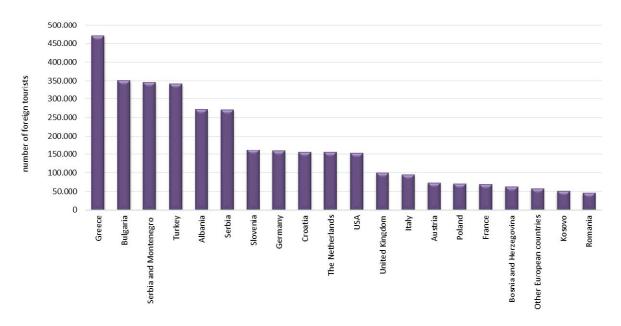
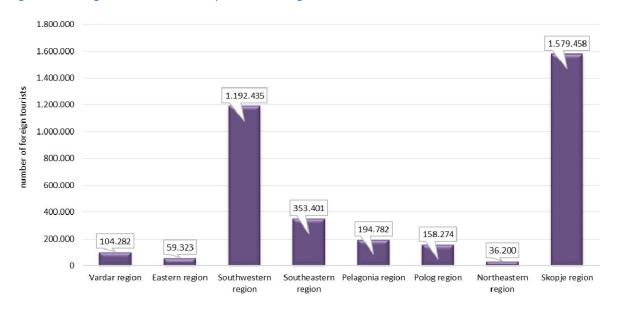



Figure 4. Foreign tourists arrivals by statistical regions

Other tourist resort;
1.123.118

Skopje
1.314.729

Other tourist resort;
1.124.324

Figure 5. Foreign tourists arrivals by types of resorts in the period from 2003 to 2014

Data source: State Statistical Office

Assessment

Data in the Figure indicates that the Republic of Macedonia is visited by a high number of countries. Tourists from Europe, Northern America, Asia and Australia prevail. The structure of visits during the observed period is dominated by tourists from the immediate neighborhood. Leading position among the first twenty counties making significant share in the overall number of foreign tourists belongs to tourists from Greece, Bulgaria, Serbia and Montenegro, Turkey, Albania and Serbia, while the highest number of tourists from among other continents comes from United States of America. Development of attractive and receptive base of the Republic of Macedonia should enable greater presence of tourists from Western European countries having longer tourism tradition and thus higher tourist culture level. The number of foreign tourists has notable rising trend from 121.337 tourists in 1997 to 425.314 tourists in 2014, which is an increase of 3.5 times. In the reporting period, Greece has had the highest share with 11.41% or 472.152 tourists, while South Africa has had the lowest share with 0.008% or 350 tourists of the total number of foreign tourists in Macedonia.

According to regional distribution, Skopje region with 1.579.458 tourists and Southwestern region with 1.192.435 tourists area leading regional centers for tourists, representing two differentiated regions of different characteristics. Southwestern region is dominated by resource attractiveness, while Skopje region by business activity possibilities. Other regions possess alternative possibilities deriving from different environments and therefore it is important to monitor the intensity of foreign tourist visits with a view to redistribute the intensity of visits.

With reference to foreign tourists arrivals by types of resorts, Skopje has had the highest share in the total number of tourists with 40.42%, followed by other tourist resorts with 34.53%, other resorts

with a share of 19.87%, mountain resorts with a share of 3.82% and the lowest share belongs to sparesorts with 1.35% of the total number of tourists.

Methodology

Methodology for the indicator calculation

The data on tourists have been obtained on the basis of the regular monthly reports of catering and other business entities providing services of accommodation to tourists or act as intermediaries in the provision of these services. Guest books kept by business operators as a legal obligation are sources of data.

Policy relevance

List of relevant policy documents

- National Strategy for Tourism Development 2009 2013 (revised in 2015)
- National Environmental Action Plan 2 in Section 4.2.6. Tourism, describes the main challenge for sustainable tourism development, implementation of economic potential with minimum possible impact on the environment.
- Spatial Plan of the Republic of Macedonia in its Chapter 5.4. "Tourism development and organization of tourist areas", defines the status, objectives and planning determinations for tourism development.
- National Strategy for Sustainable Development of the Republic of Macedonia in the section on tourism, presents the directions for sustainable development of tourism, within short, medium, and long-term frames, up to 2030.
- Strategy for Biological Diversity Protection in the Republic of Macedonia with Action
 Plan under measure C.5 "Stimulation of traditional use of biological diversity and ecotourism", defines the action for identification of sites suitable for eco-tourism.

Legal grounds

The Law on Tourist Activity specifies the conditions and the manner of performing tourist activity (Chapter 15 Services in rural, ethno and eco-tourism), Law on Catering Activity.

The Law on Environment, the Law on Nature Protection, the Law on Waste Management, the Law on Ambient Air Quality and the Law on Waters regulate partially the requirements for environmental protection in tourist activity.

Targets

- Integration of the principles of sustainable development and environmental considerations in tourist sector
- Identification of areas of priority importance for tourism development
- Encouragement of exchange of best practices between public and private tourist interests
- Protection of natural heritage and biological diversity in tourist resorts
- Adoption and implementation of legislation in the area of tourism to regulate the protection of the environment

 Promotion of organic farming, healthy food production and especially traditional production of certain products (e.g. cheese, wine), production of honey, herbs growing, etc.

Promotion of certain types of tourism such as wine tourism, hunting tourism, birds observation tourism, etc.

Reporting obligation

- Yearly to EUROSTAT
- World Tourist Organization (WTO)
- Annual tourist review of tourism and other services
- Five-year interview of foreign tourists in accommodation establishments

Code	Title of the indicator		vith CSI EEA or other adicators	Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 047 - 1	Tourism intensity in the Republic of Macedonia	TOUR 12	Tourism intensity	D, P	А	Biological diversity Nature Policies Waste Water Air Transport Soil	Yearly Every five years

MK - NI 047-2

TOURISM INTENSITY IN THE REPUBLIC OF MACEDONIA

2 Overnights of foreign tourists

Definition

The indicator shows the total number of overnights of foreign tourists by years at country level and by statistical regions. Also, it shows the structure of overnights and average stay of tourists by country of origin.

Units

Number

Key policy issue

What is the trend of overnights of foreign tourists in the Republic of Macedonia?

Key message

With regard to international tourist visits, the overnights of foreign tourists during the analyzed period have had rising trend of 3.47 times in 2014 compared to 1997%.

The Netherlands had significant share in the overnights of foreign tourists in Macedonia during the analyzed period with 4.23 days average stay of tourists. By statistical regions, the highest number of overnights was recorded in Southwestern and Skopje regions. With regard to overnights of foreign tourists by types of resorts, the highest number of overnights was recorded in other tourist resorts with 2.999.372 overnights, and the lowest number in spa resorts with 258.686 overnights.

Figure 1. Total number of overnights by foreign tourists

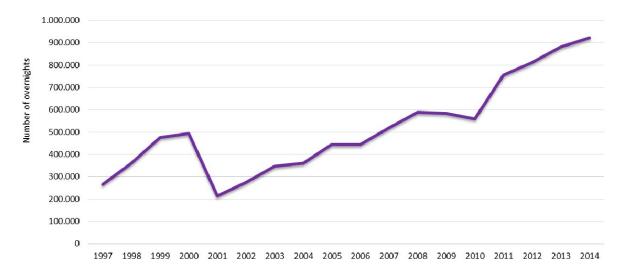


Figure 2. Total number of overnights and average stay by foreign tourists by country of origin

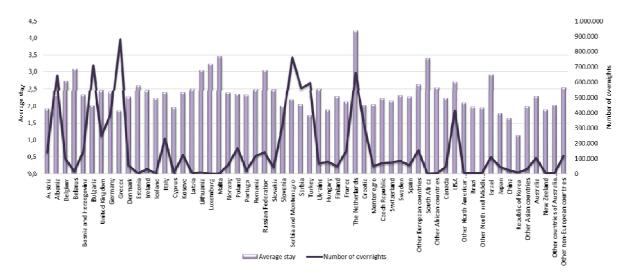


Figure 3. Countries with significant share in the average stay of foreign tourists

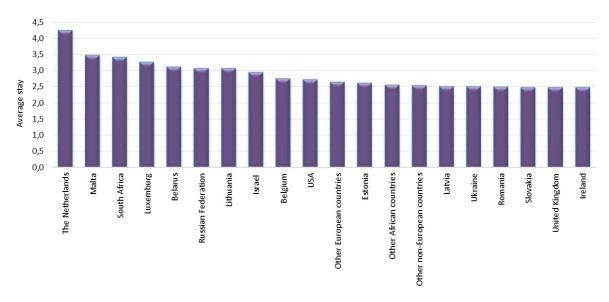


Figure 4. Overnights by foreign tourists by statistical regions

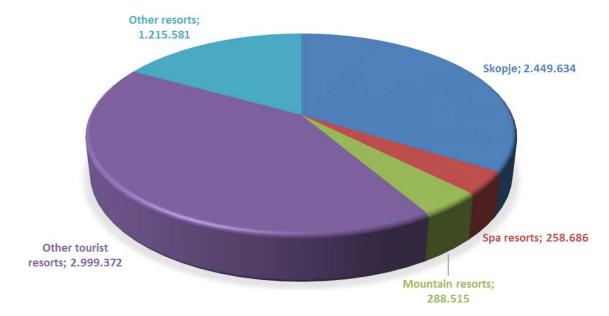


Figure 5. Overnights by foreign tourists by types of resorts in the period from 2003 to 2014

Data source: State Statistical Office

Assessment

Overnights parallel the intensity of visits by foreign tourists in the Republic of Macedonia. Summarized results indicated that the highest number overnights was accomplished by tourists from European countries, with The Netherlands having the highest share in the average stay of tourists with 4.23 days. From among other continents, tourists from South Africa had the longest average stay with 3.41 days. Observation of the trends enables us to follow the extent to which the attractiveness of the environment is adjusted to the demands of these visitors.

Regional distribution of accomplished foreign overnights indicates that tourists in Southwestern region have accomplished highest number of overnights, followed by Skopje region, which is unfavourable circumstance in the context of foreign tourist visits as the visits take place mainly in urban environments. Observation of relations within regional distribution of overnights accomplished by foreign tourists enables considerations of measures undertaken towards accomplishment of overnights in other regions with specific values.

The average number of foreign tourists provides the opportunity to monitor the level of prevalence of the characteristics of environment. The Figure indicates that foreign tourists stay for relatively short time in the Republic of Macedonia. This duration is around 2.25 days at an average during the analyzed period which reflects significant lagging behind the average stay by national tourists which is 4.66 days.

With regard to overnights of foreign tourists by types of resorts, the highest share in the overall number of overnights is recorded in other tourist resorts with 41.59%, followed by Skopje with 33.97%, other resorts with a share of 16.86%, mountain resorts with a share of 4% and the lowest share belongs to spa resorts with 3.59% in the total number of overnights.

Methodology

Methodology for the indicator calculation

The data on tourists have been obtained on the basis of the regular monthly reports of catering and other business entities providing services of accommodation to tourists or act as intermediaries in the provision of these services. Guest books kept by business operators as a legal obligation are sources of data.

Policy relevance

List of relevant policy documents

- National Strategy for Tourism Development 2009 2013 (revised in 2015).
- National Environmental Action Plan 2 in Section 4.2.6. Tourism, describes the main challenge for sustainable tourism development, implementation of economic potential with minimum possible impact on the environment.
- Spatial Plan of the Republic of Macedonia in its Chapter 5.4. "Tourism development and organization of tourist areas", defines the status, objectives and planning determinations for tourism development.
- National Strategy for Sustainable Development of the Republic of Macedonia in the section on tourism, presents the directions for sustainable development of tourism, within short, medium, and long-term frames, up to 2030.
- Strategy for Biological Diversity Protection in the Republic of Macedonia with Action Plan – under measure C.5 "Stimulation of traditional use of biological diversity and ecotourism", defines the action for identification of sites suitable for eco-tourism.

Legal grounds

The Law on Tourist Activity specifies the conditions and the manner of performing tourist activity (Chapter 15 Services in rural, ethno and eco-tourism), Law on Catering Activity.

The Law on Environment, the Law on Nature Protection, the Law on Waste Management, the Law on Ambient Air Quality and the Law on Waters regulate partially the requirements for environmental protection in tourist activity.

Targets

- Integration of the principles of sustainable development and environmental considerations in tourist sector
- Identification of areas of priority importance for tourism development
- Encouragement of exchange of best practices between public and private tourist interests
- Protection of natural heritage and biological diversity in tourist destinations
- Adoption and implementation of legislation in the area of tourism to regulate the protection of the environment
- Promotion of organic farming, healthy food production and especially traditional production of certain products (e.g. cheese, wine), production of honey, herbs growing, etc.

Promotion of certain types of tourism such as wine tourism, hunting tourism, birds observation tourism, etc.

Reporting obligation

- Yearly to EUROSTAT
- World Tourist Organization (WTO)
- Annual tourist review of tourism and other services
- Five-year interview of foreign tourists in accommodation establishments

Code	Title of the indicator	1	vith CSI EEA or other adicators	Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 047 - 2	Tourism intensity in the Republic of Macedonia	TOUR 12 TOUR 33	Tourism Intensity Overnights spent in tourism accommodations	D, P	Α	Biological diversity Nature Policies Waste Water Air Transport Soil	Yearly Every five years

MK - NI 047-3

TOURISM INTENSITY IN THE REPUBLIC OF MACEDONIA

3 National tourists intensity

Definition

The indicator shows the total number of overnights of national tourists by years at country level and by statistical regions and average stay of tourists.

Units

Number

Key policy issue

Does the number of national tourists, overnights and average stay have development dimension?

Key message

With regard to national tourist visits, the overall number of tourists during the analyzed period has had falling trend of 24%. Furthermore, it is obvious that the accomplished overnights parallel tourist visits and have had falling trend of 34.4% during the analyzed period. The average stay of national tourists of 4.75 days in 2000 dropped to 4.10 days in 2014.

By statistical regions, the highest number and overnights of national tourists were recorded in Southwestern region and the lowest in Northeastern region.

With regard to national tourist arrivals by types of resorts, the highest number of national tourists was recorded in other tourist resorts with 2.274.631 tourists and the lowest in spa resorts with 241.776 tourists. As for overnights of national tourists by types of resorts, the highest number of overnights was recorded in other tourist resorts with 13.418.204 overnights and the lowest number in Skopje with 364.993 overnights.

Figure 1. Total number of national tourists and number of overnights

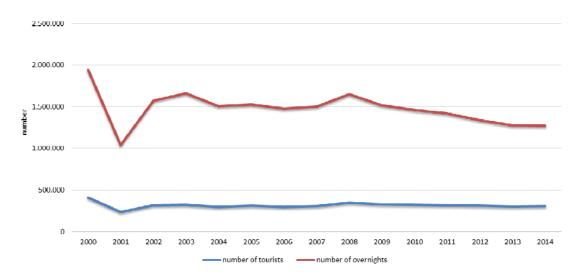


Figure 2. Average stay of national tourists

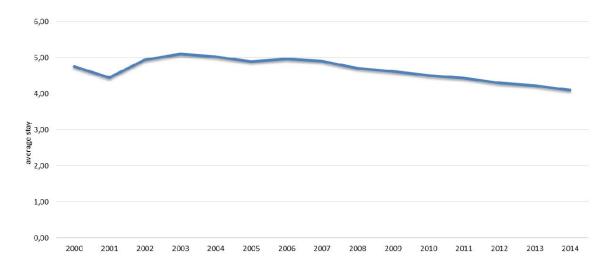


Figure 3. Number of national tourists and number of overnights by statistical regions

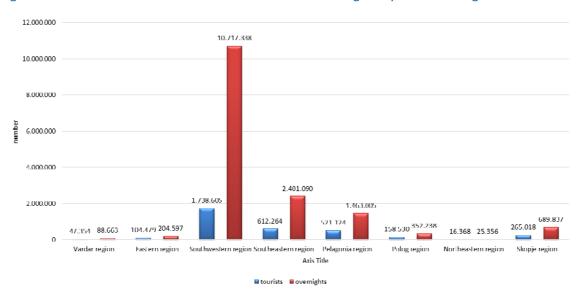
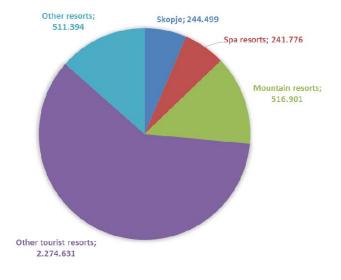



Figure 4. Arrivals of national tourists by types of resorts in the period 2003 to 2014

Other resorts;
843.265

Skopje; 364.993

Spa resorts;
1.734.140

Mountain resorts;
1.242.189

Other tourist
resorts; 13.418.204

Figure 5. Overnights of national tourists by types of resorts in the period from 2003 to 2014

Data source: State Statistical Office

Assessment

The number of national tourists has had falling trend of 24%; namely, the number of national tourists in 2000 was the highest, and it was the lowest in 2001. Similar characteristics have been observed with overnights accomplished by national tourists, i.e. the highest number of overnights was accomplished in 2000 and the lowest number of overnights in 2001. Also, the results reflect these relations with regard to average stay, showing significant fall in the number of overnights from 2007 to 2014. The shortest average stay of 4.10 days was recorded in 2014 and the longest one in 2003 amounting 5.1 days.

Southwestern region holds prevalence with regard to national tourists distribution, which can be assessed both as favourable aspect and uneven distribution. Observation of these indicators should indicate the extent to which the number of national tourists will increase in other regions as a result of the promotion of environmental elements in touristic offer on the national tourist market.

Furthermore, we may conclude that accomplished overnights follow tourist visits as a result of the attractiveness of the environment and thus the highest number of overnights is recorded in Southwestern region. Observation of overnights will show the extent to which regions will improve attractive base as factor in accomplishing higher number of overnights.

With regard to national tourist arrivals by types of arrivals, the highest share in the overall number of tourists was recorded in other tourist resorts with 60.03%, followed by mountain resorts with 13.64%, other resorts with a share of 13.5%, Skopje with a share of 6.45% and the lowest share was recorded for spa resorts with 6.22% in the total number of tourists.

With regard to overnights of national tourists by types of resorts, the highest share in the total number of overnights was recorded in other tourist resorts with 76.23%, followed by spa resorts with 9.85%, mountain resorts with a share of 7.06%, other resorts with share of 4.79% and Skopje noted the lowest share with 2.07% in the total number of overnights.

Methodology

Methodology for the indicator calculation

The data on tourists have been obtained on the basis of the regular monthly reports of catering and other business entities providing services of accommodation to tourists or act as intermediaries in the provision of these services. Guest books kept by business operators as a legal obligation are sources of data.

Policy relevance

List of relevant policy documents

- National Strategy for Tourism Development 2009 2013 (revised in 2015)
- National Environmental Action Plan 2 in Section 4.2.6. Tourism, describes the main challenge for sustainable tourism development, implementation of economic potential with minimum possible impact on the environment.
- Spatial Plan of the Republic of Macedonia in its Chapter 5.4. "Tourism development and organization of tourist areas", defines the status, objectives and planning determinations for tourism development.
- National Strategy for Sustainable Development of the Republic of Macedonia – in the section on tourism, presents the directions for sustainable development of tourism, within short, medium, and long-term frames, up to 2030.
- Strategy for Biological Diversity Protection in the Republic of Macedonia with Action Plan – under measure C.5 "Stimulation of traditional use of biological diversity and eco-tourism", defines the action for identification of sites suitable for eco-tourism.

Legal grounds

The Law on Tourist Activity specifies the conditions and the manner of performing tourist activity (Chapter 15 Services in rural, ethno and eco-tourism), Law on Catering Activity.

The Law on Environment, the Law on Nature Protection, the Law on Waste Management, the Law on Ambient Air Quality and the Law on Waters regulate partially the requirements for environmental protection in tourist activity.

Targets

- Integration of the principles of sustainable development and environmental considerations in tourist sector
- Identification of areas of priority importance for tourism development
- Encouragement of exchange of best practices between public and private tourist interests
- Protection of natural heritage and biological diversity in tourist destinations
- Adoption and implementation of legislation in the area of tourism to regulate the protection of the environment

 Promotion of organic farming, healthy food production and especially traditional production of certain products (e.g. cheese, wine), production of honey, herbs growing, etc.

Promotion of certain types of tourism such as wine tourism, hunting tourism, birds observation tourism, etc.

Reporting obligation

- Yearly to EUROSTAT
- World Tourist Organization (WTO)
- Annual tourist review of tourism and other services
- Five-year interview of foreign tourists in accommodation establishments

Code	Title of the indicator	Compliance with CSI EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 047 - 3	Tourism intensity in the Republic of Macedonia - National tourists intensity	TOUR 12 TOUR 33	Tourism Intensity Overnights spent in tourism accommodations	D, P	Α	Biological diversity Nature Policies Waste Water Air Transport Soil	Yearly Every five years

MK – NI 048

TOURISM INTENSITY AND FACILITIES DYNAMICS

Definition

Accomodation establishments are supra-structural facilities facilitating visits and stay of tourists in a given environment. Their observation enables the assessment of regional development. The indicator shows the number of accommodation facilities, rooms and beds.

Units

Number of facilities, number of rooms and number of beds.

Key policy issue

What is the impact of accomodation establishments on the environment?

Key message

The number of accomodation units may have both positive and negative impacts. Positive impacts are related to proper utilization of the space for facilities location, and negative impacts are made when the space is occupied iby accomodation establishments in inadequate manner.

The total number of accommodation establishments – facilities in the period 2000 to 2014 had a trend of increase by 63%. The number of rooms noted minor rising trend by 1%, and the number of beds noted falling trend by 6%, which is due to improved standard of accommodation facilities.

With regard to the structure of accommodation facilities, it is important to underline that increases occur for facilities of hotel nature, while decreases are primarily in the sphere of workers' resorts and uncategorized facilities for accommodation. The number of hotel facilities in 2014 compared to 2008 increased by 69%, number of holiday houses, apartments and rooms for rent in the same period decreased by 33%, and the number of workers' resorts decreased by 21% and uncategorized accommodation facilities decreased by 32%.

Figure 1. Total number of accommodation establishments-facilities

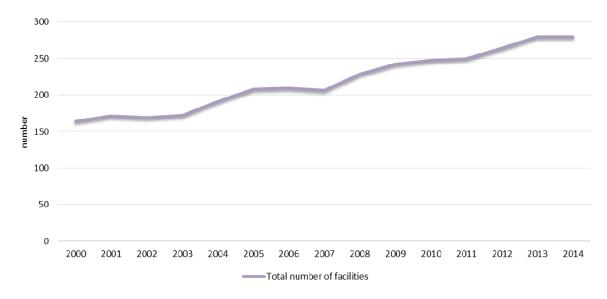


Figure 2. Total number of accommodation establishments – rooms and beds

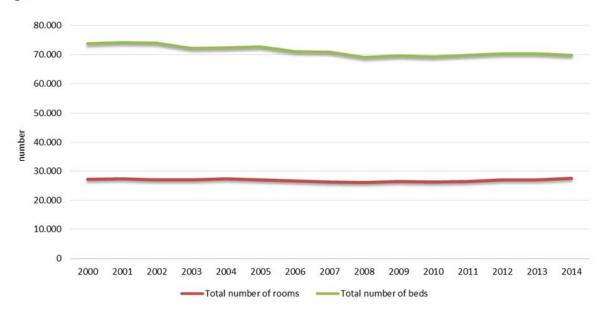


Figure 3. Accommodation establishments – structure of facilities

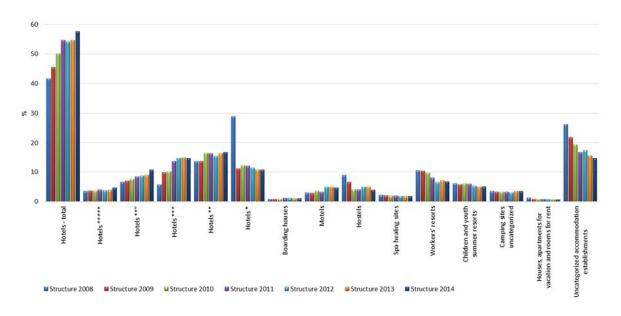
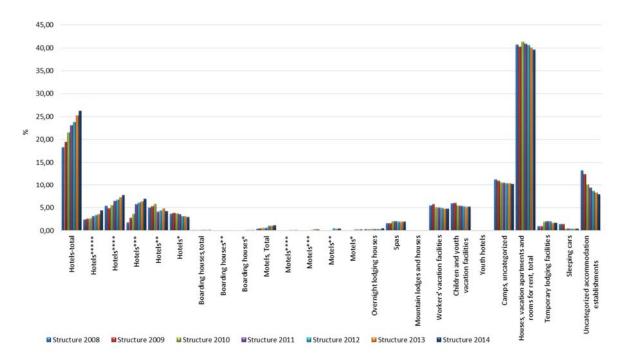



Figure 4. Accommodation establishments – rooms structure

Hotels***

Hotels****

Hotels****

Hotels****

Hotels****

Hotels****

Hotels****

Hotels****

Hotels****

Motels***

Motels**

Temporary lodging houses to large and houses and house and hou

Figure 5. Accommodation establishments – beds structure

Data source: State Statistical Office

Assessment

In 2008, statistical monitoring of accommodation establishments by stars was introduced for the first time. Categorization of establishments by stars cannot be automatically linked with the categorization by which establishments were monitored earlier and this caused interruption in annual data series.

The total number of accommodation establishments – facilities in the period 2000 to 2014 had a trend of increase by 63%. The number of rooms noted minor increase by 1%, while the number of beds had falling trend of 0.6%, which is due to improved standard in accommodation facilities. With regard to the structure of facilities, it is important to underline that increases are present with facilities of hotel nature, while decreases are observed primarily in the area of workers' resorts and uncategorized accommodation facilities. The number of hotel facilities in 2014 compared to 2008 increased by 69%, the number of vacation houses, apartments and rooms for rent in the same period reduced by 21% and uncategorized accommodation facilities decreased by 32%. This can be assessed as positive trend because it is a result of the transformation of non-commercial into commercial sector which will have to be more observant of environmental protection standards.

In the category of motels, the number of rooms and beds had highest increase of 2.2 times. In the category of sleeping cars, the number of rooms and beds recorded the greatest drop by 67% (rooms) and 77% (beds), respectively.

Methodology

Methodology for the indicator calculation

Development trend of accomodation units.

Share of individual types of accomodation establishments in the total number.

Policy relevance

List of relevant policy documents

- National Strategy for Tourism Development 2009 2013 (Revised in 2015).
- National Environmental Action Plan 2 in Section 4.2.6. Tourism, describes the main challenge for sustainable tourism development, implementation of economic potential with minimum possible impact on the environment.
- Spatial Plan of the Republic of Macedonia in its Chapter 5.4. "Tourism development and organization of tourist areas", defines the objectives and planning determinations for tourism development.
- National Strategy for Sustainable Development of the Republic of Macedonia – in the section on tourism, presents the directions for sustainable development of tourism, within short, medium, and long-term frames, up to 2030.
- Strategy for Biological Diversity Protection in the Republic of Macedonia with Action Plan – under measure C.5 "Stimulation of traditional use of biological diversity and eco-tourism", defines the action for identification of sites suitable for eco-tourism.

Legal grounds

The Law on Tourist Activity specifies the conditions and the manner of performing tourist activity (Chapter 15 Services in rural, ethno and eco-tourism); Law on Catering Activity.

The Law on Environment, the Law on Nature Protection, the Law on Waste Management, the Law on Ambient Air Quality and the Law on Waters regulate partially the requirements for environmental protection in tourist activity.

Targets

- Integration of the principles of sustainable development and environmental considerations in tourist sector
- Identification of areas of priority importance for tourism development
- Encouragement of exchange of best practices between public and private tourist interests
- Protection of natural heritage and biological diversity in tourist destinations
- Adoption and implementation of legislation in the area of tourism to regulate the protection of the environment
- Promotion of organic farming, healthy food production and especially traditional production of certain products (e.g. cheese, wine), production of honey, herbs growing, etc.
- Promotion of certain types of tourism such as wine tourism, hunting tourism, birds observation tourism, etc.

Reporting obligation

- Statistical Yearbook
- WTO
- EUROSTAT

Code	Title of the indicator	Compliance with CSI EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 048	Tourism density and facilities dynamics	TOUR 14	Tourism density	S, P	Α	Biodiversity Nature Policies Waste Water Air Transport	Annually

MK - NI 049

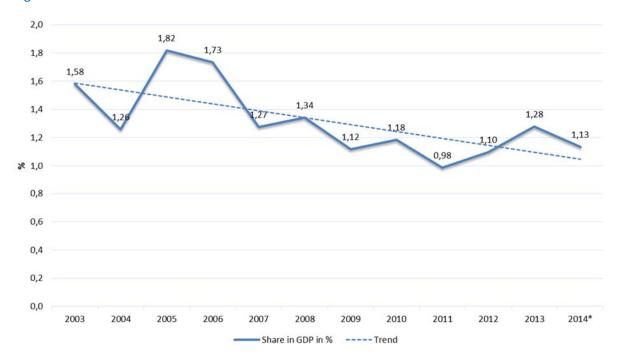
ECONOMIC VALUE OF TOURISM INDUSTRY

Definition

Share in BDP is the share of the gross value added, in percentage, in the area of tourism in the total Gross Domestic Product on national level.

Units

- %.


Key policy issue

What is the impact of tourism relying on the characteristics of the environment on the economic development of the Republic of Macedonia?

Key message

Share of tourism in gross domestic product has had constant decreasing trend. Drop by 28.2% was recorded in 2014 compared to 2003 and amounted 1.13%, reflecting very low contribution of tourism to the economic development of the Republic of Macedonia.

Figure 1. Share of tourism in GDP in %

Data coverage: excel

Data source: State Statistical Office

Assessment

The Figure shows that the share of tourism in GDP is relatively low with falling trend during the reporting period, namely its share in 2014 recorded decrease by 28.2% compared to 2003. The share of the tourism was the highest in 2005 amounting 1.82%, and it was the lowest in 2011 with 0.98%. Observation should enable insight in the extent in which effects from tourist development on the environment improve.

Revenues acquired on the basis of tourist fee and taxes will enable environment planning and protection and also offer the opportunity to legal and natural persons to improve their living and working conditions.

Methodology

Methodology for the indicator calculation

Share of value added from tourism in GDP.

Policy relevance

List of relevant policy documents

- National Strategy for Tourism Development 2009 2013
- National Environmental Action Plan 2 in Section 4.2.6. Tourism, describes the main challenge for sustainable tourism development, implementation of economic potential with minimum possible impact on the environment.
- Spatial Plan of the Republic of Macedonia in its Chapter 5.4. "Tourism development and organization of tourist areas", defines the objectives and planning determinations for tourism development.
- National Strategy for Sustainable Development of the Republic of Macedonia –
 in the section on tourism, presents the directions for sustainable development of
 tourism, within short, medium, and long-term frames, up to 2030.
- Strategy for Biological Diversity Protection in the Republic of Macedonia with Action Plan

 under measure C.5 "Stimulation of traditional use of biological diversity and eco-tourism", defines the action for identification of sites suitable for eco-tourism.

Legal ground

The Law on Tourist Activity specifies the conditions and the manner of performing tourist activity; Law on Catering Activity.

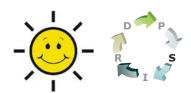
The Law on Environment, the Law on Nature Protection, the Law on Waste Management, the Law on Ambient Air Quality and the aw on Waters regulate partially the requirements for environmental protection in tourist activity.

Targets

- Integration of the principles of sustainable development and environmental considerations in tourist sector
- Identification of areas of priority importance for tourism development
- Encouragement of exchange of best practices between public and private tourist interests
- Protection of natural heritage and biological diversity in tourist destinations

- Adoption and implementation of legislation in the area of tourism to regulate the protection of the environment
- Promotion of organic farming, healthy food production and especially traditional production of certain products (e.g. cheese, wine), production of honey, herbs growing, etc.
- Promotion of certain types of tourism such as wine tourism, hunting tourism, birds observation tourism, etc.

Reporting obligation


- Yearly publication on GDP
- Statistical Yearbook

Code	Title of the indicator	Compliance with CSI EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI049	Economic value of tourism industry	TOUR35	Economic value of tourism industry	D	В	Biodiversity Nature Policies Waste Water Air Transport	Annually

МК - НИ 042

AIR POLLUTION AND LEAD IN BLOOD – LEAD LEVEL IN CHILDREN'S BLOOD

Definition

This indicator tracks the exceedances of Guideline values of lead level in children's blood in urban areas. The level of lead in the blood of children is expressed as average value of individual concentrations of lead in the blood in micrograms/decilitres (µg/dl).

Excess in air quality limit values occurs when the concentration of pollutant exceeds the limit values specified for lead in the Decree on the limit values of levels and types of polluting substances in ambient air (2005).

Where there are several limit values (see the section on Policy goals), the indicator uses the most stringent case:

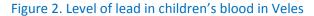
- Lead (Pb): annual limit value in ambient air
- Lead (Pb): level of lead in blood

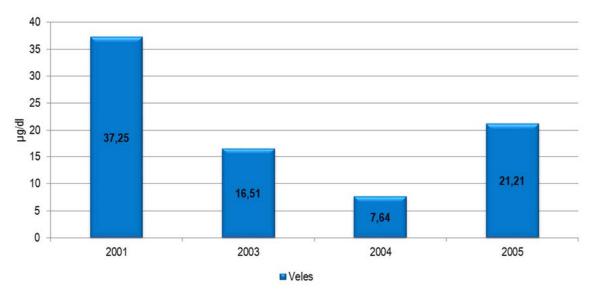
Units

- Lead (Pb) concentrations in ambient air are expressed in micrograms/m3.
- Lead level in the blood is expressed in micrograms/dl.

Key policy issue

What progress has been made towards reduction of pollutants concentrations in urban environments in order to achieve the limit values for ambient air in urban environments defined in the Decree?


What progress has been made towards reduction of lead level in blood of vulnerable segment of the population, such as children in urban environments defined in the WHO Guidelines?


Key message

There has been a trend of reduction in the lead concentrations below the limit values in the period presented.

0,9 0,8 0,7 0,6 ε_ω/6r/0,5 0,4 0,3 0,2 0,1 0 2001 2002 2003 2004 2005 2009 ■ Skopje Weles

Figure 1. Lead concentrations in air in Skopje and Veles

Data coverage: **excel**

Source: Public Health Institute of the Republic of Macedonia

Assessment

Lead

The lead in the air most frequently originates from lead and zinc ores smelting. The occurrence of high lead concentrations in the ambient air in Veles in the period before 2003 resulted from the emissions released by Lead and Zinc Smelter in Veles.

High difference in lead concentrations in Veles measured in the period 2001-2002 was due to the emissions released by Lead and Zinc Smelter, while lead concentrations in ambient air decreased between 2003 and 2005 as a result of the terminated operation of the Smelter.

The level of lead in the blood of school aged children between 10 and 14 has been falling along with the improvement of the ambient air quality with regard to lead as air pollutant. In the period from 2001 to 2003, the level of blood with children in Veles was in excess of the levels recommended by the WHO. In 2004, when the Lead and Zinc Smelter was out of operation, the recorded levels of lead in school aged children's blood was below the guideline value of WHO. In 2005, there was another increase in the level of lead in children's blood.

The graphical presentation shows the falling trend in lead concentrations in the ambient air in the period between 2001 and 2009.

The graphical presentation shows the falling trend in the levels of lead in children's blood in the period between 2001 and 2005. The latest measurement of lead concentrations in blood was conducted in 2005.

Methodology

Methodology for the indicator calculation

Lead in ambient air – Pb μg/m³

For each station located in urban environment, annual lead concentration in ambient air (annual limit value of $0.5 \, \mu g/m^3$) is calculated using available 24 hourly data during entire year. Selected urban stations include stations of the following type: stations measuring the pollution from the traffic, stations measuring pollution from industry and so called urban background stations. The average concentration is obtained by averaging the results from all stations located in Veles. In Skopje, there is only one monitoring station with discontinued monitoring.

Lead in children's blood - Pb/blood µg/dl

In 2005, analysis was made on vein blood taken from school aged children between 10 and 14 in Veles and the individual levels of blood recorded have provided the average level of lead in the blood (Guideline value of WHO is below 10 μ g/dl). Analysis is made to estimate the level of current exposure of children to lead in urban environment resulting from historical pollution (up to 2003) and pollution caused by traffic.

Uncertainty

Methodological uncertainty

Generally, data is not representative for the whole urban environment in the Republic of Macedonia. After the closure of the Lead and Zinc Smelter in Veles and elimination of lead from petrol, concentrations of lead in ambient air have dropped significantly. Compared to the defined methodology of the European Environmental Agency, where the indicator is calculated using data only from the so called urban background stations, in our indicator calculation we have used data on ambient air quality with regard to lead content produced by one measuring station in the Municipality of Centre in the City of Skopje, with monitoring of discontinuous type. Such monitoring has not been established in other cities of our country.

Uncertainty of data

Data is generally not representative for the whole urban environment in the Republic of Macedonia. According to the defined methodology of the European Environmental Agency, only data series from monitoring stations with at least 75% coverage in the course of one year shall be taken into account in the indicator calculation (or more than 274 valid daily data during one calendar year). In our case, this was not observed in the use of data from the monitoring station in Skopje. Representativeness

of choice in the case of monitoring stations in Veles on ambient air quality with regard to lead content complies with the requirements of the EU Directive 1999/30/EC.

Policy relevance of the indicator

List of relevant policy documents:

The Second National Environmental Action Plan –2 sets the improvement of air quality through reduction of basic pollutants emission as its main priority. The same document specifies two basic measures that need to be taken: to prepare national plan for ambient air protection and strengthening the ambient air quality monitoring and assessment process.

The 1999 National Environmental Health Action Plan identifies the goal of implementation of targeted epidemiological investigations of the health status primarily with vulnerable population groups in health risky areas (Lead and Zinc Smelter - Veles) in terms of air pollution (non-ferrous metallurgy).

Legal grounds

The Law on Environment regulates areas that have direct impact on the quality of air, i.e. should contribute to air emissions reduction. Thus, the Law regulates the issues of IPPC, EIA/SEA, local environmental action plans and climate change.

The Law on Ambient Air Quality - The goals of this Law include: avoidance, prevention and reduction of harmful effects on human health and environment as a whole, prevention and reduction of pollutions leading to climate change, as well as provision of adequate information on the ambient air quality.

The Decree on the limit values of levels and types of polluting substances in ambient air and on the alert thresholds, deadlines for the limit values achievement, margins of limit value tolerance, target values and long-term targets (2005).

The Law and the Decree transpose the requirements of the following EU Directives:

- Framework Air Quality Directive 96/62/EC on ambient air quality assessment and management
- Directive 1999/30/EC on limit values for sulphur dioxide, nitrogen dioxide and nitrogen oxides, suspended particulate matters and lead in ambient air.

The level of lead in ambient air and lead in the blood of exposed population are defined in the World Health Organization Air Quality Guidelines of 1987 and 2000.

Targets

The Decree on the limit values of levels and types of polluting substances in ambient air and on the alert thresholds, deadlines for the limit values achievement, margins of limit value tolerance, target values and long-term targets specifies the limit values for lead. The WHO Air Quality Guidelines define the guideline values for the lead concentration in ambient air and lead level in the blood of exposed population.

Regular monitoring enables the values of lead concentrations to be maintained below the limit values, namely:

Annual limit value of 0.5 µg/m3 in ambient air.

Lead level in children's blood below 10 µg/dl.

Reporting obligation

European Environmental Agency

 Exchange of air quality data based on the Council Decision on the establishment of reciprocal exchange of information and data from all networks and individual ambient air quality measuring stations (97/101/EC).

World Health Organization - ENHIS

 Levels of lead in children's blood, according to WHO Air Quality Guidelines, 1987 and 2000.

Code	Title of the indicator	Compliance with C	· · · ·	Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 004	Excess in air quality limit values in urban areas	CSI 004 Exceedance of air quality limit values in urban areas		s	A	Air Air quality	annually
MK NI 042	Level of lead in children's blood	ENHIS RP G4_Chem_Ex1	Blood levels in children	s		Health	annually

MK – NI 043

MORTALITY DUE TO RESPIRATORY DISEASES (J00 - J99) WITH INFANTS

Definition

The indicator shows mortality rate of respiratory diseases (J00 - J99) with infants. In this context, infants are alive born children aged 1 to 12 months, respiratory diseases are acute or chronic condition of respiratory systems, including acute respiratory infections, bronchitis, pneumonia or influenza (J00—J99). According to data available from epidemiological studies, infants' mortality could be in correlation with the level of air pollution in the environment, along with series of other factors that can influence respiratory diseases mortality and morbidity. Therefore, the indicator is considered useful in the assessment of the load of diseases attributed to ambient air quality.

Units

Number of deaths per 1000 alive born infants aged between 1 and 12 months.

Key policy issue

What steps have been taken to reduce or prevent the increase in the mortality rate from respiratory diseases (J00 - J99) with infants?

What cross-sectoral policies have been implemented so far in order to reduce respiratory morbidity and mortality with the general population and with infants in particular?

Key message

Respiratory diseases with infants are not attributable only to air pollution, but also to biological and genetic factors of infants, presence of allergens, infective agents, nutrition, socio-economic factors and parents' educational background.

The analysis of the trend indicates variable conditions in the reporting period with an evident drop in 2005, which then raised again in the next year. Mortality rate is also dependent on the effectiveness of the health system and availability of health care services.

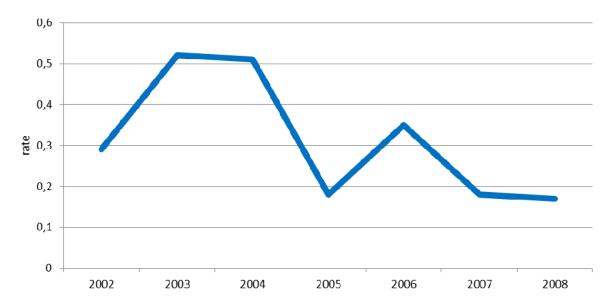


Figure 1. Mortality rate from respiratory diseases (J00-J99)

Data coverage: **excel**

Source: State Statistical Office

Assessment

The mortality rate from **respiratory diseases (J00 - J99)** with infants, in the period 2002 – 2008, ranged between 0.18 and 0.52. The increased mortality rate with infants from respiratory diseases can be attributed to exposure at pollutants in the ambient air both indoors and outdoors, while the falling of the rate results from improved conditions and air quality. However, such significant changes in the levels of air pollution were not observed. Different criteria in diagnosis setting and reporting of death and causes leading to it may have had influence on this variable trend.

Respiratory diseases as cause of death in the general population are ranked at fifth position in the structure of causes for death in general population.

Methodology

Methodology for the indicator calculation

The indicator of mortality from respiratory diseases (J00 - J99) with infants is calculated as a rate of infants that died from respiratory diseases (J00 - J99) per 1000 infants aged from 1 to 12 months.

Policy relevance of the indicator

List of relevant policy documents

The Second National Environmental Action Plan –2 sets the improvement of air quality through reduction of basic pollutants emission as its main priority. The same document specifies two basic measures that need to be taken: to prepare national plan for ambient air protection and strengthening the ambient air quality monitoring and assessment process.

The 1999 National Environmental Health Action Plan identifies the goal of implementation of targeted epidemiological investigations of the health status primarily with vulnerable population groups in health risky areas (Lead and Zinc Smelter - Veles) in terms of air pollution (non-ferrous

metallurgy).

The National Children's Environment and Health Action Plan in which the current children's health profile in the country is presented, identifies the current environmental health risks to children from air pollution, indoors primarily passive tobacco smoking and outdoors, originating from the processes of heating, traffic and industry.

The Environmental Health Action Plan for Europe and the Handbook – Planning to protect Children against hazards – The Regional Priority Goal III reads: We aim to prevent and reduce respiratory diseases due to outdoor and indoor air pollution, thereby contributing to a reduction in the frequency of asthmatic attacks in order to ensure that children can live in an environment with clean air. We aim to achieve a substantial reduction in the morbidity and mortality from acute and chronic and respiratory disorders in children and adolescents."

Legal grounds

The **Law on Environment** regulates areas that have direct impact on the quality of air, i.e. should contribute to air emissions reduction. Thus, the Law regulates the issues of IPPC, EIA/SEA, local environmental action plans and climate change.

The **Law on Ambient Air Quality** – the principle of precautionary and accountable behaviour stipulates that: In the course of activities that may affect the quality of ambient air, everyone shall be obliged to behave in a careful and responsible manner in order to avoid and prevent ambient air pollution and harmful effects on human health and environment as a whole.

Targets

To reduce the mortality rate from respiratory diseases (J00 - J99) with infants, or prevent the mortality rate increase.

Reporting obligation

Every doctor stating death is obliged to fill in the reporting list on the death event, stating
the causes for the death and then such data is collected in the national database of the
State Statistical Office

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 043	Mortality due to respiratory diseases (J00—J99) with infants	ENHIS Air_E2	Mortality due to respiratory diseases	S		Air Health Traffic Local self- government	annually

МК – НИ 044

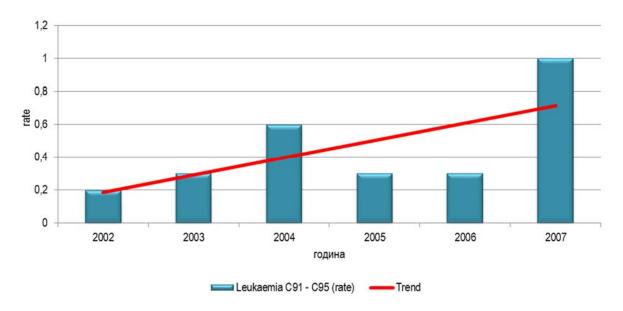
INCIDENCE OF CHILDHOOD LEUKAEMIA

Definition

Incidence of leukemia is the rate of new diagnosed cases of leukemia defined by ICD-10 codes C90-95 in children aged 0 to 14 years.

Units

Number of diagnosed cases of leukaemia per 100 000 persons aged 0 to 14 years.


Key policy issue

What progress has been made to reduce the incidence of childhood leukaemia?

Key message

The incidence of childhood leukaemia shows a rising trend in the reporting period 2002-2007, with a peak of the incidence in 2004 and especially significant increase in 2007.

Figure 1. Incidence of leukemia among children aged 0-14 years

Data coverage: **excel**

Source: National Register of malignant diseases

Assessment

The indicator uses data from the national register of malignant diseases for the period 2002 - 2007. The indicator is based on data on children aged 0 - 14 years.

Considering the fact that causal factors of leukaemia are not fully clear, policies to reduce incidence

are difficult to formulate or have limited effects. For example, policies to reduce exposure to ionising or electromagnetic radiation potentially prevent only a small portion of leukaemia cases. Therefore, it is necessary to undertake further coordinated research into environmental impacts on leukaemia and environmental/genetic interactions. It is particularly important to monitor childhood leukaemia. National registers with continual follow-up that employ standardized or comparable methods and should include environmental health indicators should be universal.

In the context of public health, leukaemia related mortality is an important co-indicator for assessment of the quality of health care system.

Methodology

Methodology for the indicator calculation

National estimates of incidence rates are standardized to world standard population aged 0 - 14 years: number of new cases per 100000 person-years.

Policy relevance of the indicator

List of relevant policy documents

Leukaemia is often discussed when environmental issues and childhood diseases are considered. The causes of the majority of cases are, however, unknown. As a result, there is a lack both of policies aiming directly at reducing the incidence of leukaemia and of major programmes fostering research into the potential risk factors for leukaemia in Europe.

The new Regulation of the European Parliament and the Council concerning the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) is of relevance. It considers that the carcinogenicity, mutagenic and reproductive toxicity of chemical industrial substances are priority criteria when they are submitted to security constraints and declarations authorizing their use. The target of REACH is to substitute progressively substances that are known to be safer for most carcinogenic, mutagenic and toxic industrial substances. Of further relevance is Council Directive 97/43/EURATOM, which aims to protect patients from excessive exposure to radiation for medical use and ensure that there is minimum exposure during pregnancy and early childhood.

The Second National Environmental Action Plan - 2 (2006), as its main goal, sets the achievement of environmental quality by which concentrations of pollutants will not lead to significant impacts or risks to human health, establishment of effective system of prevention, control and assessment of health risks in accordance with the requirements of the national and EU legislation, as well as with WHO recommendations, through taking the specific measure of NEHAP review and further implementation, with particular accent on the risks to children's health.

The 1999 National Environmental Health Action Plan, in its section on ionising and non-ionising radiation, specifies the priorities and specific activities that need to be undertaken to reduce negative impacts from these radiations on human health.

Legal grounds

The **Law on Chemicals**, the basic principle of the Law is the precaution principle, placing human health safety and environment protection on top.

The Law on Ionising Radiation incorporates provisions concerning the protection of the population against ionising radiation. The legal person causing ionising radiation, in case of caused release of radioactive substances in the environment, and consequently adverse impacts on human health, shall compensate the damage.

Targets

To reduce leukaemia incidence in children aged 0 to 14.

Reporting obligation

 Every doctor establishing diagnosis of leukaemia is obliged to fill in the reporting list on the malignant disease, and then such data is delivered to Regional public health centres, further delivered to the national Public Health Institute

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 044	Incidence of childhood leukaemia	ENHIS RPG4_Rad_E1	Incidence of childhood leukaemia	S		Health Waste Consumption of radioactive preparations	Annually

МК – НИ 045

INCIDENCE OF MELANOMA IN PEOPLE AGED UNDER 55 YEARS

Definition

The incidence of melanoma in people aged under 55 years is the number of detected cases during one year expressed per 100 000 residents of selected population.

The incidence is obtained by calculating the number of cases on the mean population size during the period considered. The age-standardized rate is calculated using the age groups. The age group considered here are those aged 0–54 years.

Units

Number of cases per 100 000 persons-year.

Key policy issue

What steps have been taken to prevent the rising trend of melanoma?

What cross-sectoral policies have been implemented so far to reduce the exposure of the general population and especially children, as it seems that the latter population is the most sensitive and exposure during this period of life leads to consequences in later age?

Key message

Melanoma is one of cancers with the most rapid rate of growth among people in Europe, which is also the case with us. Melanoma rate trends differ in different regions: in North Europe, where rates are high, it seems that they have been stopped as of the 1990s, especially among people aged below 55. This seems to be a result of changed pattern of stay on sun and protective behavior towards UV radiation among younger generation. Contrary to this, the rates in South and Eastern Europe, where the Republic of Macedonia belongs, still note significant rise in all age groups.

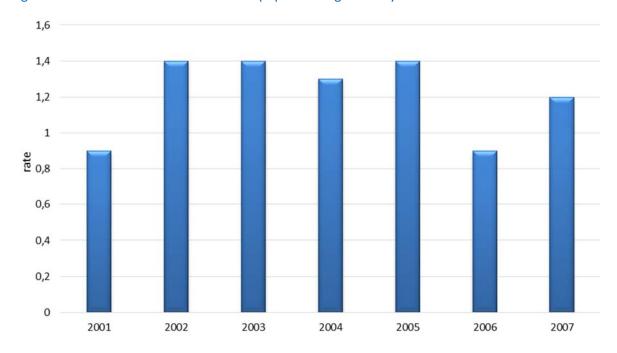


Figure 1. Melanoma incidence rate in the population aged 0-54 years

Data coverage: **excel**

Source: National Register of malignant diseases, State Statistical Office

Assessment

The incidence of melanoma ranges between rates of 0.9 in 2001, retained at 1.4 during the follow-up years, which means that it tracks an increasing trend.

The analysis of the incidence of melanoma over the period 2001-2007 shows significant rising trend in the 2001-2002 period, which is then retained in the next years, but with increased incidence rate. The rising trend is an alarm for taking preventive measures, i.e. protecting the population against UV radiation.

National policies for reduction of exposure at artificial UV radiation, including regulations on sunbeds use by children and teenagers should be implemented in many countries of the WHO European Region.

Excessive exposure at UV radiation can be best prevented through regional and local campaigns for public awareness increase and information, especially in educational institutions. The goal is to encourage school age children to undertake self-protection measures against sun.

The above policy is supported by the experiences from West European countries. Stagnation as of 1990s following the precedent rising trend in North Europe among people aged below 55 supports the conclusion specific protection activities against UV radiation in these countries are effective.

Methodology

Methodology for the indicator calculation

The incidence of melanoma in people aged under 55 years is calculated as the number of new diagnosed cases of melanoma during one year per 100 000 residents.

Policy relevance of the indicator

List of relevant policy documents

There are at present few official regulations in most European countries on policies to reduce excessive exposure of children to UV radiation. Melanoma is strongly linked with exposure to UV radiation during childhood and is therefore largely preventable. WHO has launched the INTERSUN Global UV Project to stress the importance of increasing awareness and knowledge about the potential negative health effects of exposure to UV radiation, especially during childhood. This information should be readily available through various channels such as television, radio, campaigns, meteorological websites and in schools. A UV radiation index can help to identify appropriate action based on the measured UV radiation levels. Furthermore, the use of sunbeds by children should be strongly discouraged, if not forbidden. The INTERSUN Project recommendations can serve as a framework for an action plan to reduce exposure to UV radiation.

The Second National Environmental Action Plan - 2 (2006), in its part on non-ionising radiation, specifies the main targets and measures towards the establishment of effective system of environment protection and control against harmful effects of non-ionising radiation in the Republic of Macedonia.

The 1999 National Environmental Health Action Plan, in its section on non-ionising radiation, specifies the priorities and specific activities that need to be undertaken to reduce negative impacts from this radiation on human health.

The National Strategy for Climate Change, in its part 6.6. Health, provides an overview of climate change impacts on human health.

Targets

To reduce the incidence of melanoma through implementation of cross-sectoral policies aimed at public awareness increase and improved education of the population.

Reporting obligation

 Every doctor establishing diagnosis of melanoma is obliged to fill in the reporting list on the malignant disease, and then such data is delivered to Regional public health centres, further delivered to the national Public Health Institute

Code	Title of the indicator	Compliance with other indic	•	Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 045	Incidence of melanoma in people aged under 55 years	ENHIS RPG4_Uvrd_E1	Incidence of melanoma in people aged under 55 years	s		Health Climate change Tourism	Annually

МК – НИ 046

MORTALITY FROM TRAFFIC ACCIDSENTS WITH CHILDREN AND YOUNG PEOPLE

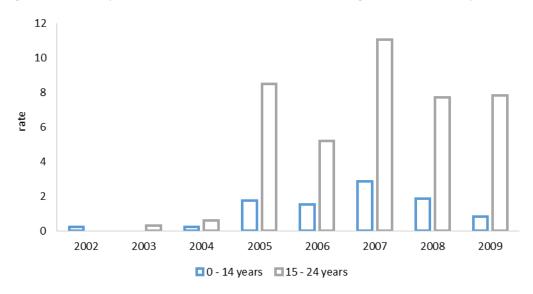
Definition

The indicator shows the mortality rate from traffic accidents for children aged 0 - 14 years and young people aged 15 - 24, the trend in a given period and comparison of data on European Region and policy relevance related thereto.

Units

Number of deaths per 100 000 children aged 0 - 14 years or per 100 000 young people aged
 15 - 24 years, respectively.

Key policy issue


What steps have been taken to reduce or prevent the increase of the mortality rate from traffic accidents with vulnerable groups like children and young people?

What cross-sectoral policies have been implemented to reduce the number of traffic accidents for the general population and especially children population, as it appears that this population is the most sensitive and exposure in childhood results in consequences at later age?

Key message

The mortality rate for children and young people is lower in our country compared to specific mortality rates in other European countries like Greece, Spain, France, Germany. Nevertheless, this rate is sufficient to indicate the need for introduction of intervention programmes as part of cross-sectoral policies.

Figure 1. Mortality from traffic accidents, rate at 100 000, age 0-14 and 15-24 years

Data coverage: **excel**

Source: State Statistical Office

Assessment

The mortality rate for children aged 0-14 years and young peopleaged 15-24 has been relatively stable in the period 2002 to 2004, with significant rise in 2005. The rise in the rate in 2005 could as well reflect the improved system of causes of death reporting. The period 2005 to 2009 was characterized with variable trend of mortality rate reduction and increase.

Methodology

Methodology for the indicator calculation

The indicator mortality from traffic accidents (800 and 848) is calculated as rate of deaths attributable to traffic accidents involving persons aged 0 - 14 years and aged 15 - 24 years per 100 000 residents from among the said age groups.

Policy relevance of the indicator

List of relevant policy documents

The National Children and Environment Protection Action Plan which presents the current health profile of children in the country defines the existing environmental health risks for children for the purpose of their protection against accidents and trauma.

The Gudiebook - Planning of Children's Protection against Hazards – Regional Priority Goal II reads: "We aim to prevent and significantly reduce health consequences from accidents and injuries and pursue a decrease in morbidity from lack of adequate physical activity, by promoting safe, secure, and supportive human settlements for all children".

Legal grounds

The Law on Traffic Safety at Roads - This Law regulates the safety and protection on roads; traffic rules on roads and the system of traffic signs and equipment; obligations in case of traffic accident; conditions for acquiring the right to drive a vehicle; candidates training for drivers; driving examination taking and checking of driver's ability; checking of vehicles, devices and equipment that are compulsory for the vehicles; dimensions, total mass; axial loading of vehicles and conditions that shall be met by vehicles in traffic; technical check-ups of vehicles; special safety measures; organization and tasks of the safety at roads councils, as well as misdemeanour sanctions and misdemeanour procedure administered with regard to misdemeanours in the field of traffic at road.

Targets

To reduce the mortality rate from traffic accidents with children and young people populations through appropriate intervention programmes.

Reporting obligation

Every doctor stating death is obliged to fill in the reporting list on the death event, stating
the causes for the death and then such data is collected in the national database of the

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		, Tyne		Туре	Linkage with area	Frequency of publication
MK NI 046	Mortality from traffic accidents in children and young people	ENHIS Traf_E1	Mortality from traffic accidents	s	Α	Health Transport Local self- government Physical planning	Annually	

MK - NI 067

ENVIRONMENTAL PROTECTION EXPENDITURES

Definition

Environmental protection expenditures is an indicator composed of total investment and total current expenditures. Current expenditure is the sum of internal running costs plus compensations and other payments for environmental protection services.

Environmental protection expenditures track how much has been invested for reconstruction and procurement of technology and equipment for environment protection and how much has been spent for these technologies and equipment maintenance and operation. Environmental protection expenditures also include compensations and payments for environmental protection services (e.g. collection of waste, management of waste waters, environmental consultations).

Units

- Environmental protection investments (in thousand denars)
- Expenditures for environmental protection assets maintenance (in thousand denars)
- Investments and expenditures in industry and specialized producers (in thousand denars)

Key question

Can investments and expenditures for activities intended for protection, reduction and elimination of pollution or other degradation of environment contribute to society responding to environmental concerns and how are those financed?

Key message

In the period 2013 to 2015, investments for environmental protection noted decline. In 2013, the highest investment was made in the area of waste management. The highest expenditures for maintenance of the environmental protection assets were recorded in the same area. It is of key importance to increase both investment and expenditures for activities and assets of environmental protection in order to minimize the negative effects of processes and activities related to operations of business entities, especially industry and people's behaviour.

Figure 1. Total investments in environmental protection

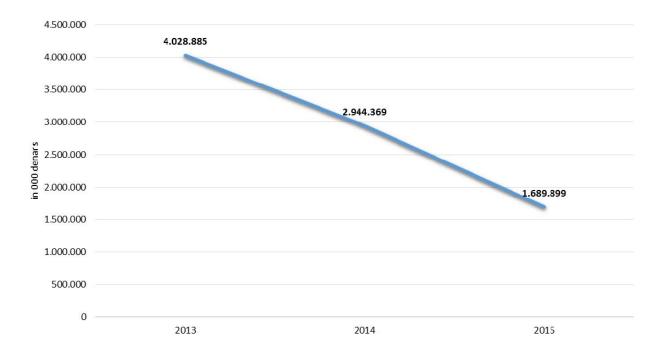


Figure 2. Investments in environmental protection by sector

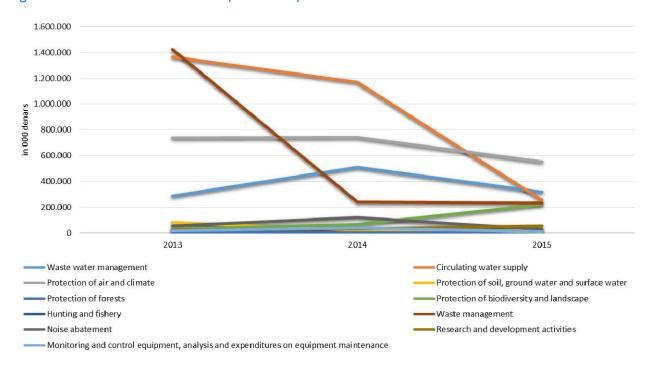


Figure 3. Total expenditures for environmental protection assets maintenance

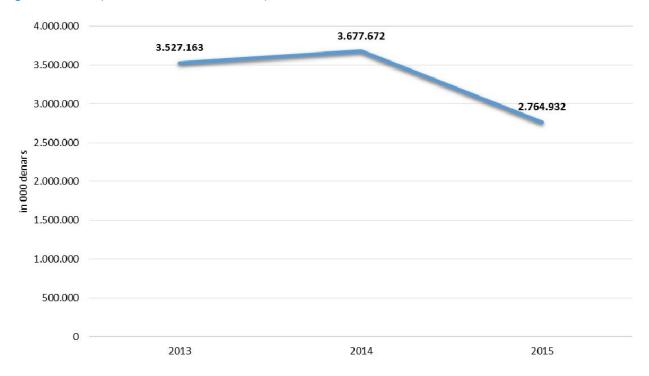


Figure 4. Total expenditures for environmental protection assets maintenance by sector

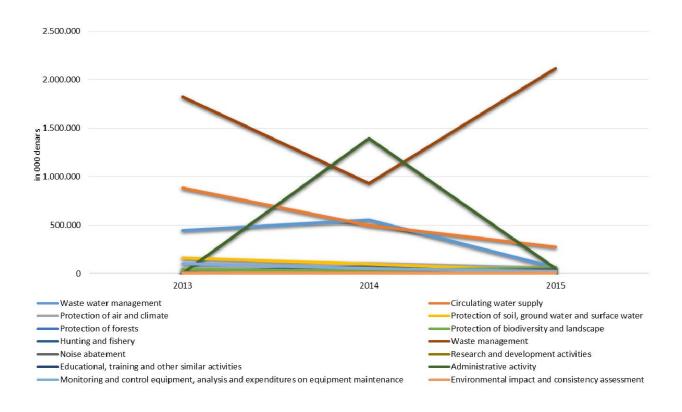
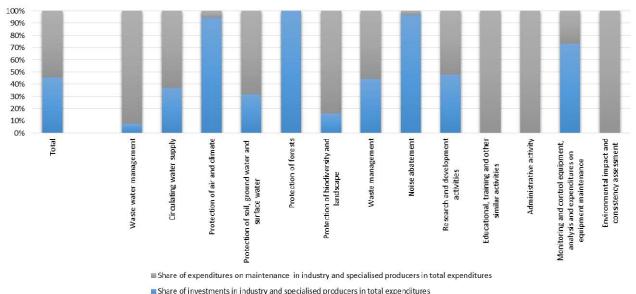



Figure 5. Share of environmental protection investments and expenditures in industry and specialized producers in overall expenditures, 2015

Data coverage: **excel**

Source: State Statistical Office

Assessment

The public is increasingly aware of the need for environment protection against pollution and waste. Today, the protection if the environment is integrated in all policy areas with an ultimate goal of achieving sustainable development. All activities inevitably affect the environment to a certain extent which means that all sectors in the economy play specific role in overall efforts to minimize negative effects: governmental agencies and local authorities, companies involved in industrial and other business activities, businesses producing environmental services (e.g. collection and handling of waste) and households as consumers.

The purpose of statistical survey of environmental protection expenditures is to answer the following three questions:

- How much is paid by residential units producers or consumers and in what form for environmental protection?
- To what level is this expenditure financed by various institutional sectors?
- What is the value of environmental protection services produced by various economic activities?

In the period 2013 to 2015, both investments in and expenditures for environmental protection showed declining trend. The largest area of investment and expenditure related to environment protection is the area of waste management – waste handling.

Comparative analysis of 2013 and 2014 data indicates that overall investments in and expenditures for environment protection in 2014 were lower by 12.3% than in 2013. The falling trend continued in 2015 as well; namely, the share of investments in the overall investments in and expenditures for environment protection in 2015 was 37.9% compared to 2014 when it was 44.5%, while the share of expenditures in 2015 recorded insignificant increased reaching 62.1% compared to 55.5% in 2014.

In 2015, the highest amount of funds was invested in waste handling, while in 2014 and 2013 in water supply circulating systems. In relation to the expenditures for assets maintenance with regard to purpose, those were made for waste management in all years.

Observed by sectors of economic activity, the share of expenditures for environmental protection in industry and specialized producers in 2015 was 86.7% (2014-73.9%), while for other sectors it was 13.3 % (2014-26.1%). In industry and specialized producers, observed by purpose, the highest expenditures occurred for waste handling amounting 2.245.035 thousand denars. These expenditures were doubled compared to 2014 when they amounted 1.059.437 thousand denars. In other sectors, the highest expenditures in 2015 occurred for circulating water supply systems amounting 120.141 thousand denars, and the expenditures for forest protection with the amount of 12.197 thousand denars were the lowest.

The ratio between the expenditures for environmental protection and gross domestic product is an important indicator of the protection of the environment relative to overall economic activity. In the period 2013-2014, the share of expenditures was around 1.3% of BDP or 1.06% in 2015.

Methodology

Data on the expenditures of environmental protection is gathered through regular statistical survey conducted on annual basis. It is carried out on the basis of sample designed within the statistical business register. Reporting units are business entities/local units (by NCA Rev.2) having funds of financial and non-financial fixed assets for environmental purposes (MFS-EN and NFS-EN).

Policy relevance of the indicator

List of relevant policy documents:

- Regulation 691/2011 of 6 July 2011 of the European Parliament and of the Council.
- Regulation 58/97 of 20 December 1997 for structural business statistics SBS
- National Classification of Activities NCA Rev.2
- Classification of environmental protection activities (CEPA 2000).

Legal grounds

- Law on State Statistics (Official Gazette of RM no. 54/97, 21/07, 51/11,104/13, 42/14, 192/15 and 27/16)
- Programme for statistical surveys for the period 2013-2017 (Official Gazette of RM no. 20/13, 24/14, 13.15 and 7/16

Targets

No specific targets.

Reporting obligation • OECD/EUROSTAT

Code	Title of the indicator	Compliance with CSI/EEA or other indicators		Classification by DPSIR	Туре	Linkage with area	Frequency of publication
MK NI 067	Expenditures for environmental protection			R	Α	Business entities	1 - year